Skip to main content
Log in

Luminescence Degradation Mechanisms in CdS/ZnSe Colloidal Nanocrystals

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The results of the study of one-photon processes of optically induced degradation of photoluminescence intensity of CdS/ZnSe nanocrystals are presented, and mechanisms of this degradation are determined. It is shown that the nanocrystal photodegradation process consists of three components. The first degradation component is caused by Auger recombination activation in photoinduced hole trapping by the trap associated with a surface state; a long-term degradation component can be associated with thermally activated chemical bond breaking between a passivating ligand, i.e., oleic acid, and the nanocrystal surface followed by nonradiative recombination channel activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

RERFERENCES

  1. J. M. Costa-Fernandez, R. Pereiro, and A. Sanz-Medel, TrAC Trends in Analytical Chemistry 25, 207 (2006). https://doi.org/10.1016/j.trac.2005.07.008

    Article  Google Scholar 

  2. D. R. Larson, Science 300, 1434 (2003). https://doi.org/10.1126/science.1083780

    Article  ADS  Google Scholar 

  3. G. Niu, L. Wang, R. Gao, et al., J. Mater. Chem. 22, 16914 (2012). https://doi.org/10.1039/c2jm32459h

    Article  Google Scholar 

  4. G. J. Supran, Y. Shirasaki, K. W. Song, et al., MRS Bull. 38, 703 (2013). https://doi.org/10.1557/mrs.2013.181

    Article  Google Scholar 

  5. P. Martyniuk and A. Rogalski, Prog. Quantum Electron. 32 (3–4), 89 (2008). https://doi.org/10.1016/j.pquantelec.2008.07.001

    Article  ADS  Google Scholar 

  6. S. Coe, W.-K. Woo, M. Bawendi, and V. Bulovic, Nature 420, 800 (2002). https://doi.org/10.1038/nature01217

    Article  ADS  Google Scholar 

  7. S. Hohng and T. Ha, J. Am. Chem. Soc. 126, 1324 (2004). https://doi.org/10.1021/ja039686w

    Article  Google Scholar 

  8. C. Carrillo-Carrion, S. Cardenas, B. M. Simonet, et al., Chem. Commun. 35, 5214 (2009). https://doi.org/10.1039/b904381k

  9. M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996). https://doi.org/10.1021/jp9530562

    Article  Google Scholar 

  10. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, et al., J. Phys. Chem. B 101, 9463 (1997). https://doi.org/10.1021/jp971091y

    Article  Google Scholar 

  11. N. E. Korsunska, M. Dybiec, L. Zhukov, et al., Semicond. Sci. Technol. 20, 876 (2005). https://doi.org/10.1088/0268-1242/20/8/044

    Article  ADS  Google Scholar 

  12. Y. Zhao, C. Riemersma, F. Pietra, et al., ACS Nano 6, 9058 (2012). https://doi.org/10.1021/nn303217q

    Article  Google Scholar 

  13. C. E. Rowland and R. D. Schaller, J. Phys. Chem. C 117, 17337 (2013). https://doi.org/10.1021/jp405616u

    Article  Google Scholar 

  14. W. G. J. H. M. van Sark, P. L. T. M. Frederix, D. J. V. den Heuvel, et al., J. Phys. Chem. B 105, 8281 (2001). https://doi.org/10.1021/jp012018h

    Article  Google Scholar 

  15. A. A. Bol and A. Meijerink, J. Phys. Chem. B 105, 10203 (2001). https://doi.org/10.1021/jp010757s

    Article  Google Scholar 

  16. J. J. Peterson and T. D. Krauss, Phys. Chem. Chem. Phys. 8, 3851 (2006). https://doi.org/10.1039/b604743b

    Article  Google Scholar 

  17. S. R. Cordero, P. J. Carson, R. A. Estabrook, et al., J. Phys. Chem. B 104, 12137 (2000). https://doi.org/10.1021/jp001771s

    Article  Google Scholar 

  18. M. Jones, J. Nedeljkovic, R. J. Ellingson, et al., J. Phys. Chem. B 107, 11346 (2003). https://doi.org/10.1021/jp035598m

    Article  Google Scholar 

  19. D. R. Cooper, D. Suffern, L. Carlini, et al., Phys. Chem. Chem. Phys. 11, 4298 (2009). https://doi.org/10.1039/b820602c

    Article  Google Scholar 

  20. K. Sato, S. Kojima, S. Hattori, et al., Nanotechnology 18, 465702 (2007). https://doi.org/10.1088/0957-4484/18/46/465702

    Article  Google Scholar 

  21. J. Aldana, Y. A. Wang, and X. Peng, J. Am. Chem. Soc. 123, 8844 (2001). https://doi.org/10.1021/ja016424q

    Article  Google Scholar 

  22. A. V. Katsaba, V. Fedyanin, S. A. Ambrozevich et al., Semiconductors 47, 1328 (2013). https://doi.org/10.1134/S1063782613100138

    Article  ADS  Google Scholar 

  23. A. V. Katsaba, S. A. Ambrozevich, A. G. Vitukhnovsky, et al., J. Appl. Phys. 113, 184306 (2013). https://doi.org/10.1063/1.4804255

    Article  ADS  Google Scholar 

  24. A. V. Katsaba, V. Fedyanin, S. A. Ambrozevich, et al., Semiconductors 49, 1323 (2015). https://doi.org/10.1134/s1063782615100103

    Article  ADS  Google Scholar 

  25. A. V. Katsaba, S. A. Ambrozevich, V. Fedyanin, et al., J. Lumin. 214, 116601 (2019). https://doi.org/10.1016/j.jlumin.2019.116601

    Article  Google Scholar 

  26. N. Kumar, F. Alam, and V. Dutta, RSC Advances 6, 28316 (2016). https://doi.org/10.1039/c6ra04766a

    Article  Google Scholar 

  27. R. B. Vasiliev, S. G. Dorofeev, D. N. Dirin, et al., Mendeleev Commun. 14, 169 (2004). https://doi.org/10.1070/mc2004v014n04abeh001970

    Article  Google Scholar 

  28. T. Orii, S. ichi Kaito, K. Matsuishi, et al., J. Phys.: Condens. Matter 14, 9743 (2002). https://doi.org/10.1088/0953-8984/14/41/329

    Article  ADS  Google Scholar 

  29. Y. Tan, S. Jin, and R. J. Hamers, ACS Appl. Mater. Interf. 5, 12975 (2013). https://doi.org/10.1021/am403744g

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.S. Selyukov for helpful discussion of the results.

Funding

This work (spectroscopic studies) was supported by the Russian Science Foundation, project no. 17-72-20088 and degradation measurements) by the Russian Foundation for Basic Research, project no. 18-02-00653_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ambrozevich.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabolotskii, M.S., Katsaba, A.V., Ambrozevich, S.A. et al. Luminescence Degradation Mechanisms in CdS/ZnSe Colloidal Nanocrystals. Bull. Lebedev Phys. Inst. 47, 185–189 (2020). https://doi.org/10.3103/S1068335620060020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335620060020

Keywords:

Navigation