Skip to main content
Log in

ON THE ACCURACY OF AVAILABLE WAVENUMBER VALUES FOR ELECTRONIC-VIBRO-ROTATIONAL TRANSITIONS OF THE H2 MOLECULE

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

All published to date experimental wavenumber values (ν, cm–1) for electronic-vibro-rotational transitions of the H2 molecule are statistically analyzed in the vacuum wavelength range 1/ν = 600—610 nm. It is shown that a direct comparison of all datasets of various authors is blocked by the absence of deconvolving of measured spectra, blending of neighbor lines (an overlap of their profiles), and fragmentary data of most studies. Therefore, it is proposed to compare all available data with the dispersion curve of a high-resolution spectrometer by measuring and deconvolving the H2 spectra. An experimental study of such an opportunity showed that the proposed approach makes it possible not only to analyze the scatter of available data on 1/ν and ν (standard deviations are about 0.003 nm and 0.08 cm–1), but also to obtain more reliable datasets with uncertainties (95% confidence intervals) less than 0.0006 nm and 0.02 cm–1 respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Meichsner, M. Schmidt, and H.E. Wagner, Nonthermal Plasma Chemistry and Physics (Taylor and Francis, London, 2011), pp. 206–226.

    Google Scholar 

  2. The Hydrogen Molecule Wavelength Tables of G. H. Dieke, Ed. by H. M. Crosswhite (Wiley Interscience, New York, 1972).

    Google Scholar 

  3. H. G. Gale, G. S. Monk, and K. O. Lee, “Wave-Lengths in the Secondary Spectrum of Hydrogen,” Astrophys. J. 67, 89 (1928).

    Article  ADS  Google Scholar 

  4. E. W. Foster and O. Richardson, “The Fine Structure of the Spectral Lines of H2: Measurements with a Reflection Echelon,” Proc. R. Soc. London Ser. A 189, 149 (1947).https://doi.org/10.1098/rspa.1947.0034

    Article  ADS  Google Scholar 

  5. W. Lichten, T. Wik, and T. Miller, “Fine Structure of 3s, 3d: 3Σ, 3П, 3Δ Complex of H2 by Doppler-Free, Laser Spectroscopy,” J. Chem. Phys. 71, 2441 (1979). https://doi.org/10.1063/1.438650

    Article  ADS  Google Scholar 

  6. A. Alikacem and M. Larzilliere, “Fourier Transform Spectroscopy Analysis of the 3d-Triplet Complex Visible Emission Spectra of H2,” J. Chem. Phys. 93, 215 (1990). https://doi.org/10.1063/1.459594

    Article  ADS  Google Scholar 

  7. Ch. Jungen, I. Dabrowski, G. Herzberg, and M. Vervloet, “High Orbital Angular Momentum States in H2 and D2 III. Singlet–Triplet Splittings, Energy Levels, and Ionization Potentials,” J. Chem. Phys. 93, 2289 (1990). (PAPS JCPSA-93-2289-23 Observed wave numbers and identification of transition of H2 and D2).https://doi.org/10.1063/1.459008

  8. L. Jozefowski, Ch. Ottinger, and T. Rox, “Laser Spectroscopy of the H2 (n = 3 Triplet Gerade) Complex: Vibrational and Rotational Coupling between the Electronic States,” J. Mol. Spectrosc. 163, 381 (1994). https://doi.org/10.1006/jmsp.1994.1034

    Article  ADS  Google Scholar 

  9. D. Bailly, E. J. Salumbides, M. Vervloet and W. Ubachs, “Accurate Level Energies in the \(EF^{1}\Sigma_{g}^{ + }, GK^{1}\Sigma _{g}^{ + }, H^{1}\Sigma _{g}^{ + },\) \(B^{1}\Sigma _{u}^{ + }, C^{1}\Pi_{u}, B^{'1}\Sigma _{u}^{ + }, D^{1}\Pi_{g}, J^{1}\Delta_{g}\) States of H2,” Mol. Phys. 108, 827 (2010). https://doi.org/10.1080/00268970903413350

    Article  ADS  Google Scholar 

  10. B. P. Lavrov and I. S. Umrikhin, “Atlas and Wavenumber Tables for the Visible Part of the Electronic-Vibro-Rotational D2 spectrum Emitted by Low-Temperature Plasma,” J. Quant. Spectrosc. Radiat. Transfer. 182, 180 (2016).https://doi.org/10.1016/j.jqsrt.2016.05.026

    Article  ADS  Google Scholar 

  11. B. P. Lavrov, A. S. Mikhailov, and I. S. Umrikhin, “High-Resolving-Power Spectrometer with Digital Photo Recording, Based on the DFS-8 Spectrograph,” J. Opt. Technol. 78, 180 (2011).https://doi.org/10.1364/J0T.78.000180

    Article  Google Scholar 

  12. B. P. Lavrov and I. S. Umrikhin, “Optimal Values of Rovibronic Energy Levels for Triplet Electronic States of Molecular Deuterium,” J. Phys. B: At. Mol. Opt. Phys. 41, 105103 (2008). https://doi.org/10.1088/0953-4075/41/10/105103

    Article  ADS  Google Scholar 

  13. B. P. Lavrov, I. S. Umrikhin, and A. S. Zhukov, “Observation of the Fine Structure for Rovibronic Spectral Lines in the Visible Part of Emission Spectra of D2,” Phys. Rev. A 85, 052505 (2012). https://doi.org/10.1103/PhysRevA.85.052505

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. O. Diachkova.

Additional information

Translated by A. Kazantsev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diachkova, O.O., Lavrov, B.P., Mikhailov, A.S. et al. ON THE ACCURACY OF AVAILABLE WAVENUMBER VALUES FOR ELECTRONIC-VIBRO-ROTATIONAL TRANSITIONS OF THE H2 MOLECULE. Bull. Lebedev Phys. Inst. 47, 127–131 (2020). https://doi.org/10.3103/S1068335620050036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335620050036

Keywords:

Navigation