Bulletin of the Lebedev Physics Institute

, Volume 46, Issue 1, pp 9–12 | Cite as

On the Ion Drift in Cold Gas

  • S. A. MaiorovEmail author


The problem of ion drift in such a strong electric field that the ion drift velocity significantly exceeds the thermal velocity of atoms is considered. In the case where the ion mass is identical to the gas particle mass, scattering is isotropic in the center-of-mass system and the ion scattering cross section is independent of the collision velocity (hard sphere model). The ion velocity distribution function is calculated by the Monte Carlo method, its characteristics and diffusion coefficient are determined. A comparison with known numerical and analytical solutions is performed. It is found that average characteristics (drift velocity, longitudinal and transverse temperatures) are in very good agreement with the values obtained from integral relations for the two-temperature Maxwellian distribution; however, the ion velocity distribution itself differs significantly from the shifted two-temperature Maxwellian distribution.


gas discharge ion mobility Monte Carlo method ion-atom collisions drift velocity gas discharge plasma resonant charge transfer ion distribution function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. M. Smirnov, Physics of Weakly Ionized Gas in Problems with Solutions (Nauka, Moscow, 1988) [in Russian].Google Scholar
  2. 2.
    R. D. White, R. E. Robson, and K. F. Ness, Com. Phys. Comm. 142, 349 (2001).CrossRefGoogle Scholar
  3. 3.
    S. N. Antipov, E. I. Asinovskii, A. V. Kirillin, et al., J. Exp. Theor. Phys. 106, 830 (2008).CrossRefGoogle Scholar
  4. 4.
    S. A. Maiorov, Fiz. Plazmy 35, 869 (2009) [Plasma Phys. Rep. 35, 802 (2009)].Google Scholar
  5. 5.
    R. I. Golyatina and S. A. Maiorov, Kratkie Soobshcheniya po Fizike FIAN 42(10), 21 (2015) [Bulletin of the Lebedev Physics Institute 42, 294 (2015)].Google Scholar
  6. 6.
    S. A. Khrapak, J. Plasma Phys. 79, 1123 (2013).CrossRefGoogle Scholar
  7. 7.
    E. A. Mason and E. W. McDaniel, Transport Properties of Ions in Gases (Wiley, New York, 1988).CrossRefGoogle Scholar
  8. 8.
    J. V. Jovanovi, S. B. Vrhovac, and Z. L. Petrovic, Eur. Phys. J. D 21, 335 (2002).CrossRefGoogle Scholar
  9. 9.
    M. Lampe, T. B. Röcker, G. Joyce, et al., Phys. Plasmas 19, 113703 (2012).CrossRefGoogle Scholar
  10. 10.
    D. Else, R. Kompaneets, and S. V. Vladimirov, Phys. Plasmas 16, 062106 (2009).CrossRefGoogle Scholar
  11. 11.
    Z. Ristivojevic and Z. Petrovic, Plasma Sources Sci. Technol. 21, 035001 (2012).CrossRefGoogle Scholar
  12. 12.
    H. Wang, V. S. Sukhomlinov, I. D. Kaganovich, and A. S. Mustafaev, Plasma Sources Sci. Technol. 26, 024001 (2017).CrossRefGoogle Scholar
  13. 13.
    R. I. Golyatina and S. A. Maiorov, Kratkie Soobshcheniya po Fizike FIAN 39(7), 30 (2012) [Bulletin of the Lebedev Physics Institute 39, 208 (2012).Google Scholar
  14. 14.
    R. I. Golyatina and S. A. Maiorov, Plasma Phys. Rep. 43, 75 (2017).CrossRefGoogle Scholar
  15. 15.
    S. A. Maiorov, R. I. Golyatina, S. K. Kodanova, and T. S. Ramazanov, Usp. Priklad. Fiziki 3, 447 (2015).Google Scholar
  16. 16.
    S. A. Maiorov, S. K. Kodanova, R. I. Golyatina, and T. S. Ramazanov, Phys. Plasmas 24, 063502 (2017); doi: Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations