Bulletin of the Lebedev Physics Institute

, Volume 45, Issue 7, pp 195–198 | Cite as

Measurement of the Hydrodynamic Efficiency of Laser Plasma at the “Kanal-2” Installation using Aluminum and Copper Targets

  • N. V. Izotov
  • V. N. Puzyrev
  • A. T. SahakyanEmail author
  • A. N. Starodub
  • O. F. Yakushev


The results of experimental measurements of the hydrodynamic efficiency of laser plasma for aluminum and copper targets are presented. The studies were performed on the “Kanal-2” laser setup system using the ballistic pendulum method. The pressure in the interaction chamber was 10−4 Torr, the pendulum length was 145 mm, the mass of the pendulum with a target was 7.2 g. At the half-height pulse duration of 2.5 ns, the power density on the target surface was ∼1013 W/cm2. In the case of aluminum target, the hydrodynamic efficiency coefficient increased from 1.5% to 4.5% with increasing laser pulse energy from 5 J to 10 J, whereas it remained at the level of 5% for the copper target.


laser plasma hydrodynamic efficiency ballistic pendulum copper aluminum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. V. Anan’in, Yu. V. Afanas’ev, Yu. A. Bykovskii, and O. N. Krokhin, Laser Plasma. Physics and Applications (MIFI, Moscow, 2003) [in Russian].Google Scholar
  2. 2.
    Yu. V. Afanas’ev, N. G. Basov, O. N. Krokhin, et al., Interaction of High-Power Laser Radiation with Plasma, Itogi Nauki i Tekhniki. Radiotekhnika, Vol. 17 (VINITI, Moscow, 1978) [in Russian].Google Scholar
  3. 3.
    D. W. Gregg and S. J. Thomas, J. Appl. Phys. 37, 2787 (1966).ADSCrossRefGoogle Scholar
  4. 4.
    B. H. Ripin, R. Decoste, S. P. Obenschain, et al., Phys. Fluids 23, 1012 (1980); doi: 10.1063/1.863084.ADSCrossRefGoogle Scholar
  5. 5.
    M. H. Key, W. T. Toner, T. J. Goldsack, et al., Phys. Fluids 26, 2011 (1983); doi: 10.1063/1.864348.ADSCrossRefGoogle Scholar
  6. 6.
    H. Nishimura, H. Azechi, K. Yamada, et al., Phys. Rev. A 23(4), 2011 (1981).ADSCrossRefGoogle Scholar
  7. 7.
    C. Garban-Labaune, E. Fabre, C. Max, et al., Phys. Fluids 28, 2580 (1985); doi: 10.1063/1.865266.ADSCrossRefGoogle Scholar
  8. 8.
    D. Batani, H. Stabile, A. Ravasio, et al., Phys. Rev. E 68, 067403 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    B. Meyer and G. Thiell, Phys. Fluids 27, 302 (1984); doi: 10.1063/1.864483.ADSCrossRefGoogle Scholar
  10. 10.
    P. D. Gupta and S.R. Kumbhare, J. Appl. Phys. 55, 120 (1984); doi: 10.1063/1.332875.ADSCrossRefGoogle Scholar
  11. 11.
    S. I. Fedotov, L. P. Feoktistov, M. V. Osipov, et al., J. Russ. Laser Res. 25, 79 (2004).CrossRefGoogle Scholar
  12. 12.

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • N. V. Izotov
    • 1
  • V. N. Puzyrev
    • 1
  • A. T. Sahakyan
    • 1
    Email author
  • A. N. Starodub
    • 1
  • O. F. Yakushev
    • 1
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations