Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 45, Issue 2, pp 51–55 | Cite as

On the Effect of Boundary Conditions in the Ginzburg–Landau Theory on the Results of Calculations of the Critical State of Layered Structures

  • S. Yu. Gavrilkin
  • A. N. Lykov
  • A. Yu. Tsvetkov
  • P. I. Bezotosnyi
Article

Abstract

The effect of boundary conditions in the Ginzburg–Landau theory on the critical state of superconducting layered structures is studied. The method is based on the numerical solution of the Ginzburg–Landau nonlinear equations describing the behavior of a superconducting plate carrying a transport current in a magnetic field, provided the absence of vortices in it. The use of the general boundary condition for the Ginzburg–Landau system of equations leads to a change in the order parameter over the thickness of thin superconducting plates. The calculated dependences of the critical current of plates on the magnetic field applied in parallel to layers are used to determine the critical current of multilayered structures. It is assumed that the mutual influence of superconducting layers occurs only through the magnetic field induced by them.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Campbell and J. E. Evetts, Critical Currents in Superconductors (Taylor and Francis, London, 1972; Mir, Moscow, 1975).Google Scholar
  2. 2.
    G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, et al., Rev.Mod. Phys. 66, 1125 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    S. Takacs, Phys. Stat. Sol. (a) 74, 437 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    S. Ami and K. Maki, Prog. Theor. Phys. 53, 1 (1975).ADSCrossRefGoogle Scholar
  5. 5.
    M. Kulic and L. Dobrosavljevic, Phys. Stat. Sol. (b) 75, 677 (1976).ADSCrossRefGoogle Scholar
  6. 6.
    A.N. Lykov, A. Yu. Tsvetkov, and G. F. Zharkov, Zh. Eksp. Teor.Fiz. 101, 341 (2005) [J. Exp. Theor. Phys. 128, 392 (2005)].Google Scholar
  7. 7.
    A. N. Lykov and A. Yu. Tsvetkov, Phys. Rev. B 76, 144517 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    E. A. Andrushin, V. L. Ginzburg, and A. P. Silin, Usp. Fiz. Nauk 163, 105 (1993) [Phys. Usp. 36, 854 (1993)].CrossRefGoogle Scholar
  9. 9.
    P. I. Bezotosnyi, S. Yu. Gavrilkin, A. N. Lykov, and A. Yu. Tsvetkov, Kratkie Soobshcheniya po Fizike FIAN 41(6), 3 (2014) [Bulletin of the Lebedev Physics Institute 41, 153 (2014)].Google Scholar
  10. 10.
    P. I. Bezotosnyi, S. Yu. Gavrilkin, A. N. Lykov, and A. Yu. Tsvetkov, Kratkie Soobshcheniya po Fizike FIAN 41(12), 26 (2014) [Bulletin of the Lebedev Physics Institute 41, 359 (2014)].Google Scholar
  11. 11.
    P. I. Bezotosnyi, S. Yu. Gavrilkin, A. N. Lykov, and A. Yu. Tsvetkov, Fiz. Tverd. Tela 57, 1277 (2015) [Phys. Solid State 57, 1300 (2015)].Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • S. Yu. Gavrilkin
    • 1
  • A. N. Lykov
    • 1
  • A. Yu. Tsvetkov
    • 1
  • P. I. Bezotosnyi
    • 1
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations