Advertisement

Bulletin of the Lebedev Physics Institute

, Volume 45, Issue 2, pp 39–45 | Cite as

On the Generation and Detection of High-Frequency Gravitational Waves Optically Excited in Dielectric Media

  • V. S. Gorelik
  • V. O. Gladyshev
  • V. L. Kauts
Article
  • 17 Downloads

Abstract

The possibility of generating and detecting high-frequency gravitational waves based on nonlinear-optical processes in dielectric media at their excitation by intense laser radiation of visible or ultraviolet ranges is analyzed. The theory predicts the feasibility of the Hertz gravitational laboratory experiment in which the parametric conversion of intense laser radiation with frequency ω0 = 2πf0 (f0 = 1014 − 1015 Hz) to a gravitational wave with frequency ω g = 2ω0 and the reverse process of gravitational radiation reconversion to optical radiation are implemented in the condensed dielectric medium.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Weber, Phys. Rev. 117, 306 (1960).ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    J. Weber, Phys. Rev. Lett. 18, 498 (1967).ADSCrossRefGoogle Scholar
  3. 3.
    J. Weber, Phys. Rev. Lett. 20, 1307 (1968).ADSCrossRefGoogle Scholar
  4. 4.
    J. Weber, Phys. Rev. Lett. 22, 1320 (1969).ADSCrossRefGoogle Scholar
  5. 5.
    J. Weber, Phys. Rev. Lett. 25, 180 (1970).ADSCrossRefGoogle Scholar
  6. 6.
    B. P. Abbot et al. (LIGO Scientific Collab.), Phys. Rev. Lett. 116, 061102 (2016).ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    V. I. Pustovoit, Phys. Usp. 59, 1034 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    M. E. Gertsenstein and V. I. Pustovoit, Sov.Phys. JETP 16, 433 (1963).ADSGoogle Scholar
  9. 9.
    V. I. Pustovoit and L. A. Chernozatonskii, JETP Lett. 34, 229 (1981).ADSGoogle Scholar
  10. 10.
    L. Halperin and B. Laurent, Nuovo Cimento 33, 728 (1964).CrossRefGoogle Scholar
  11. 11.
    U. K. Kopvilem and V. R. Nagibarov, JETP Lett. 2, 329 (1960).ADSGoogle Scholar
  12. 12.
    L. P. Grishchuk and M. V. Sazhin, Sov. Phys. JETP 41, 787 (1975).ADSGoogle Scholar
  13. 13.
    V. B. Braginsky and V. N. Rudenko, Phys. Rep. 46, 165 (1978).ADSCrossRefGoogle Scholar
  14. 14.
    N. I. Kolosnitsyn and V. N. Rudenko, Phys. Scr. 90, 074059 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    J. B. Zeldovich, Preprint No. 38, IPM RAN (AppliedMathematics Institute, Russian Academy of Sciences, 1973).Google Scholar
  16. 16.
    M. E. Gertsenstein, Sov. Phys. JETP 14, 84 (1962).Google Scholar
  17. 17.
    V. S. Gorelik, A. M. Agaltsov, and L. I. Zlobina, J. Mol. Struct. 266, 121 (1992).ADSCrossRefGoogle Scholar
  18. 18.
    V. S. Gorelik, A. M. Agaltsov, and V. N. Moiseenko, Fiz. Tverd. Tela 34, 1318 (1992).Google Scholar
  19. 19.
    V. S. Gorelik and E. V. Zhabotinskii, Kvant. Elektron. 19, 1084 (1992) [Quant. Electron 19, 1007 (1992)].Google Scholar
  20. 20.
    V. S. Gorelik, Eur. Phys. J. Appl. Phys. 49, 33007 (2010).CrossRefGoogle Scholar
  21. 21.
    V. S. Gorelik, G. G. Mitin, and M.M. Sushchinskii, Sov. Phys. JETP 42, 419 (1975).ADSGoogle Scholar
  22. 22.
    G. G. Mitin, V. S. Gorelik, L. A. Kulevskii, et al., Sov. Phys. JETP 41, 882 (1975).ADSGoogle Scholar
  23. 23.
    V. S. Gorelik, O. P. Maximov, G. G. Mitin, and M. M. Sushchinskii, Solid State Commun. 21, 615 (1977).ADSCrossRefGoogle Scholar
  24. 24.
    V. S. Gorelik, A. D. Kudryavtseva, N. V. Tcherniega, et al., J. Russ. Laser Res. 34, 50 (2013).CrossRefGoogle Scholar
  25. 25.
    V. S. Gorelik, A. D. Kudryavtseva, V. A. Orlovich, et al., J. Russ. Laser Res. 34, 523 (2013).CrossRefGoogle Scholar
  26. 26.
    Y. Almohamed, R. Barille, A. I. Vodchits, et al., JETP Lett. 101, 365 (2015).ADSCrossRefGoogle Scholar
  27. 27.
    V. I. Bredikhin, M. D. Galanin, and V. N. Genkin, Usp. Fiz. Nauk 110(4), 3 (1973) [Sov. Phys. Usp. 16, 299 (1973)].CrossRefGoogle Scholar
  28. 28.
    V. S. Gorelik and M. G. Burdanova, Laser Phys. 24, 125001 (2014).ADSCrossRefGoogle Scholar
  29. 29.
    V. S. Gorelik and M. G. Burdanova, Laser Phys. 26, 035001 (2016).ADSCrossRefGoogle Scholar
  30. 30.
    K. I. Zaytsev, G. M. Katyba, E. V. Yakovlev, et al., J. Appl. Phys. 115, 213505 (2014).ADSCrossRefGoogle Scholar
  31. 31.
    K. I. Zaytsev, V. S. Gorelik, G. M. Katyba, and S. O. Yurchenko, J. Phys.: Conf. Series 541, 012072 (2014).Google Scholar
  32. 32.
    Yu. P. Voinov, V. S. Gorelik, K. I. Zaitsev, et al., Phys. Solid State 57, 453 (2015).ADSCrossRefGoogle Scholar
  33. 33.
    V. S. Gorelik, K. I. Zaytsev, V. N. Moiseenko, et al., Inorg.Mater. 51, 419 (2015).CrossRefGoogle Scholar
  34. 34.
    V. S. Gorelik and V. V. Kapaev, JETP 123, 373 (2016).ADSCrossRefGoogle Scholar
  35. 35.
    S. Hoffmann, Phys. Lett. B 193, 117 (1986).ADSCrossRefGoogle Scholar
  36. 36.
    K. Van Bibber, N. R. Dagdeviren, S. E. Koonin, et al., Phys. Rev. Lett. 59, 759 (1987).ADSCrossRefGoogle Scholar
  37. 37.
    G. Ruoso, R. Cameron, G. Cantatore, et al., Z. Phys. C 56, 505 (1992).ADSCrossRefGoogle Scholar
  38. 38.
    R. Cameron, G. Cantatore, A. C. Melissinos, et al., Phys. Rev. D 47, 3707 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. S. Gorelik
    • 1
    • 2
  • V. O. Gladyshev
    • 2
  • V. L. Kauts
    • 1
    • 2
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations