Bulletin of the Lebedev Physics Institute

, Volume 45, Issue 2, pp 35–38 | Cite as

To the Problem of the Water Transparency Bandwidth (1.8–11.2 eV) and Hydrogen Bonds

Article
  • 8 Downloads

Abstract

It is experimentally detected the gravity center of theOHband of Raman scattering (RS) of picosecond pulses in water shifts by ~40 cm−1 (~0.005 eV) to the high-frequency wing due to shortening the time of observation of the hydrogen bond restructuring in comparison with RS of nanosecond pulses. It was shown that declarative negation of hydrogen bonds and the introduction of the water transparency window half-width (5 eV) or (11.2 eV as seen in Fig. 1 of the paper by V. G. Artemov [Bulletin of the Lebedev Physics Institute 42, 187-191 (2015)] should be regarded as incorrect. These values multiply exceed the well known half-width in the range of 650–360 nm (~1.8 eV [1] which is defined by the fundamental absorption region and OH stretching vibration band overtones from the side of UV and IR regions, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. C. Smith et al., Appl. Opt. 20, 177 (1981).ADSCrossRefGoogle Scholar
  2. 2.
    V. N. Lednev, M. Ya. Grishin, S.M. Pershin, and A. F. Bunkin, Opt. Lett. 41, 4625 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    S.M. Pershin, A. F. Bunkin, and V. A. Lukjanchenko, Quantum Electron. 40, 1146 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    A. F. Bunkin and S.M. Pershin, RF Patent No. 98 103 249 (2002).Google Scholar
  5. 5.
    M. Chaplin, “Water Structure and Science,” www.btinternet.com/martin.chaplin/phase.htmlGoogle Scholar
  6. 6.
    Ch. C. Pradzinski, R. M. Forck, T. Zeuch, et al., Science 337(6101), 1529 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    V. G. Artemov, Kratkie Soobshcheniya po Fizike FIAN, 42(6), 49 (2015) [Bulletin of the Lebedev Physics Institute 42, 187 (2015)].Google Scholar
  8. 8.
    S. M. Pershin, V. N. Lednev, M. A. Davydov, et al., Kratkie Soobshcheniya po Fizike FIAN, 40(6), 42 (2013) [Bulletin of the Lebedev Physics Institute 40, 164 (2013)].Google Scholar
  9. 9.
    A. A. Volkov, V. G. Artemov, and A. V. Pronin, Europhys. Lett. 106, 46004 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    A. Nilsson and L. G. M. Pettersson, Chem. Phys. 389, 1 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    F. Sciortino, Which Way to Low-Density Liquid Water?, Proc. Natl. Acad. Sci. USA, Early Edition, 1–3 (2017); www.pnas.org/cgi/doi/10.1073/pnas.1710601114Google Scholar
  12. 12.
    J. G. Davis, K. P. Gierszal, P. Wang, and D. Ben-Amotz, Nature 491, 582 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    S.M. Pershin, Laser Phys. 16, 1 (2006).CrossRefGoogle Scholar
  14. 14.
    A. V. Kraiski and N. N. Mel’nik, Kratkie Soobshcheniya po Fizike FIAN, No. 12, 26 (2005) [Bulletin of the Lebedev Physics Institute, No. 12, 21 (2005)].Google Scholar
  15. 15.
    A. V. Kraiski and N. N. Mel’nik, Biophysics 57, 750 (2012).CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations