Bulletin of the Lebedev Physics Institute

, Volume 44, Issue 11, pp 343–346 | Cite as

Modification of the discrete spectral parameters of optical solitons in fibers with variable dispersion

  • K. S. Gochelashvili
  • A. A. Sysoliatin
  • A. I. Konyukhov
  • L. A. Melnikov
  • P. A. Mavrin
  • M. Yu. Salgansky


The spectral parameters of solitons result from the nonlinear Fourier transform for a pulse propagating in a fiber. A new approach for controlling the discrete component of spectral parameters is proposed. In the presence of a resonance between field oscillations and fiber dispersion, the real part of spectral parameters change, which leads to multisoliton pulse separation into fundamental solitons. It is proposed to use this effect for signal decoding in communication lines operating based on the nonlinear Fourier transform.


optical soliton nonlinear Fourier transform scattering inverse problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Akhmanov, V. A. Vysloukh, A. S. Chirkin, Optics of Femtosecond Laser Pulses (Nauka, Moscow, 1988) [in Russian].Google Scholar
  2. 2.
    M. I. Yousefi and F. R. Kschischang, IEEE Trans. Inform. Theory 60, 4312 (2014).MathSciNetCrossRefGoogle Scholar
  3. 3.
    M. I. Yousefi and F. R. Kschischang, IEEE Trans. Inform. Theory 60, 4329 (2014).MathSciNetCrossRefGoogle Scholar
  4. 4.
    S. K. Turitsyn, J. E. Prilepsky, S. T. Le, et al., Optica 4, 307 (2017).CrossRefGoogle Scholar
  5. 5.
    N. N. Akhmediev and A. Ankiewicz, Solitons–Nonlinear Pulses and Beams (Chapman andHall, London, 1997).zbMATHGoogle Scholar
  6. 6.
    Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, San Diego, 2003).Google Scholar
  7. 7.
    B. A. Malomed, SolitonManagement in Periodic Systems (Springer, New York, 2006).Google Scholar
  8. 8.
    P. Grelu and N. Akhmediev, Nature Photonics 6, 84 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    Jose M. Soto-Crespo, N. Devine, and N. Akhmediev, J. Opt. Soc. Am. B 34, 1542 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    I. Oreshnikov, R. Driben, and A. V. Yulin, Opt. Lett. 40, 5554 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    A. A. Sysoliatin, E. M. Dianov, A. I. Konyukhov, et al., Laser Phys. 17, 1306 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    A. A. Sysoliatin, A. K. Senatorov, A. I. Konyukhov, et al., Opt. Express 15, 16302 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    A. A. Sysoliatin, A. I. Konyukhov, and L. A. Melnikov, in Numerical Simulations of Physical and Engineering Processes, Ed. by Prof. J. Awrejcewicz (InTech, London, 2011).Google Scholar
  14. 14.
    A. I. Konyukhov, A. S. Plastun, M. A. Dorokhova, and L. A. Melnikov, Laser Phys. Lett. 12, 055103 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    O. V. Sinkin, R. Holzlohner, J. Zweck, and C. R. Menyuk, J. Lightwave Technol. 21, 1 (2003).CrossRefGoogle Scholar
  16. 16.
    E. M. Belenov, A. V. Nazarkin, and I. P. Prokopovich, JETP Lett. 55, 218 (1992).ADSGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • K. S. Gochelashvili
    • 1
  • A. A. Sysoliatin
    • 1
  • A. I. Konyukhov
    • 1
    • 2
  • L. A. Melnikov
    • 1
    • 3
  • P. A. Mavrin
    • 2
  • M. Yu. Salgansky
    • 4
  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Chernyshevsky Saratov State UniversitySaratovRussia
  3. 3.Saratov State Technical UniversitySaratovRussia
  4. 4.Institute of Chemistry of High-Purity MaterialsRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations