Skip to main content
Log in

Cosmological consequences of the particle-antiparticle gravitational repulsion hypothesis: the Newtonian model of the universe

  • Published:
Bulletin of the Lebedev Physics Institute Aims and scope Submit manuscript

Abstract

The model of the gravitationally neutral Universe (GNU), i.e., a giant but finite 3D Ball expanding in the infinite static Euclidean space, is considered. The model is based on the antigravitation between particles and antiparticles. The GNU Ball is filled equally by matter and antimatter clusters and freely expands after epochs of partial annihilation and recombination. The abandonment of the cosmological principle and the problem of our Galaxy position in the GNU Ball are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Planck Collaboration, “Planck 2013 Results. XVI. Cosmological Parameters,” arXiv:1303.5076 astroph. CO. (2013).

  2. L. Perivolaropoulos, “Large Scale Cosmological Anomalies and Inhomogeneous Dark Energy,” arXiv:1401.5044 v1 astro-ph.CO. (2014).

    Google Scholar 

  3. A. Einstein, Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften (Berlin), Sitzung der Physikalisch-Mathematischen Klasse, 142 (1917).

    Google Scholar 

  4. A. Friedmann, Die Welt als Raum und Zeit. Ostwalds Klassiker der Exakten Wissenschaften, Band 287, (1923).

    Google Scholar 

  5. A. Benoit-Levy and G. Chardin, Astron. Astrophys. 537, 1 (2012).

    Article  Google Scholar 

  6. A. D. Chernin, P. Teerikorpi, M. J. Valtonen, et al., “Dark Energy and the Mass of the Local Group,” arXiv: 0902.3871v1 astro-ph.CO. (2009).

    Google Scholar 

  7. I. A. Gribov and S. A. Trigger, “Jeans Instability and Antiscreening in Gravitational-Antigravitational Model of Universe,” http://arxiv:1404.7122 (2014)

    Google Scholar 

  8. S.A. Trigger, I.A. Gribov, J. Phys.: Conf. Series 653, 012121 (2015).

    ADS  Google Scholar 

  9. S. A. Trigger, “Cold Dark Matter and Dark Energy in Universe: Possible Anisotropy of the Earth Observations,” Book of Abstracts XXX International Conference “Interaction of Intense Energy fluxes with Matter,” Elbrus, Kabardino-Balkaria, Russia, 2015 (IIEFM, Elbrus, 2015), p. 208.

    Google Scholar 

  10. I. A. Gribov, “From the Waveguided Gravity to the Periodic Waveguided Multiverse as United Solution of Dark Energy and DarkMatter, SUSY - Mysteries,” http://vixra.org: 1304.0135v1 (2013).

    Google Scholar 

  11. S. Perlmutter, et al., Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  12. A. G. Riess, B. P. Schmidt, et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  13. A. Guth, Phys. Rev. D 23, 347 (1981).

    Article  ADS  Google Scholar 

  14. R. Watkins, H. A. Feldman, and M. J. Hudson, Mon. Not. R. Astron. Soc. 392, 743 (2009); Galaxies 2, 55 (2014).

    Article  ADS  Google Scholar 

  15. A. Kashlinsky, F. Atrio-Barandela, D. Kocevski, and H. Ebeling, Astrophys. J. 686, L49 (2008).

    Article  ADS  Google Scholar 

  16. F. Atrio-Barandela, A. Kashlinsky, H. Ebeling, et al., “Probing the Dark Flow Signal in WMAP 9 yr and PLANCK CosmicMicrowave BackgroundMaps,” http://arxiv: 1411.4180 (2014).

    Google Scholar 

  17. H. Alfven, J. Astrophys. Astron. 5, 79 (1984).

    Article  ADS  Google Scholar 

  18. B. A. Klumov and S. A. Trigger (private communication, to be published in 2015).

    Google Scholar 

  19. L. I. Schiff, Phys. Rev. Lett. 1, 254 (1958).

    Article  ADS  Google Scholar 

  20. P. A. R. Ade et al., Phys. Rev. Lett. 114, 101301 (2015).

    Article  ADS  Google Scholar 

  21. R. Adam, et al., “Planck Intermediate Results. XXX. The Angular Power Spectrum of Polarized Dust Emission at Intermediate and High Galactic latitudes - Planck Collaboration,” arXiv:1409.5738. astroph. CO. (2014).

    Google Scholar 

  22. G. B. Andresen et al., Nat. Phys. 7, 55 (2011).

    Article  Google Scholar 

  23. S. Aghion et al., “(AEgIS Collaboration) Prospects for Measuring the Gravitational Free-Fall of Antihydrogen with Emulsion Detectors,” http://arXiv:1306.5602 (2013).

    Google Scholar 

  24. G. Chardin et al., Preprint CERN-SPSC-2011-029/SPSC-P-342 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Trigger.

Additional information

Original Russian Text © S.A. Trigger, I.A. Gribov, A.A. Rukhadze, 2015, published in Kratkie Soobshcheniya po Fizike, 2015, Vol. 42, No. 12, pp. 43–49.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trigger, S.A., Gribov, I.A. & Rukhadze, A.A. Cosmological consequences of the particle-antiparticle gravitational repulsion hypothesis: the Newtonian model of the universe. Bull. Lebedev Phys. Inst. 43, 1–4 (2016). https://doi.org/10.3103/S1068335616010012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068335616010012

Keywords

Navigation