Bulletin of the Lebedev Physics Institute

, Volume 42, Issue 4, pp 110–114 | Cite as

Laser technologies for processing wide band-gap semiconductors and insulators: Nonlinear absorption mechanisms

  • I. N. Zavestovskaya
  • N. A. Kozlovskaya
  • O. N. KrokhinEmail author


The results of the theoretical study of damage and nonlinear light absorption mechanisms in transparent materials, i.e., wide band-gap semiconductors and insulators, are presented. It is shown that ablation processes in transparent materials exposed to laser pulses with intensity of the order of tens of TW/cm2 and pulse duration of the order of hundreds femtoseconds are efficient for various surface treatment technologies. The mechanism of tunneling nonlinear light absorption is studied. Ablation thresholds of GaN and other transparent materials such as sapphire (Al2O3), vitreous SiO2, and the same SiO2 with Ge impurity are determined. It is found that the ablation threshold depends on the band gap (absorption band edge) E g as E g 3 , which is in good agreement with experiment.


ablation nonlinear absorptions epitaxial layer transparent material 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. G. Eliseev, H.-B. Sun, S. Juodkazis, et al., Jpn. J. Appl. Phys. 38, 839 (1999).CrossRefADSGoogle Scholar
  2. 2.
    S. Nakamura and G. Fasol, The Blue LaserDiode (Springer, Berlin, 1997).CrossRefGoogle Scholar
  3. 3.
    P. G. Eliseev, I. N. Zavestovskaya, and S. N. Sokolov, “Degradation Processes in Optoelectronic Devices,” in Problems of Semiconductor Physics. Materials for Semiconductor Electronics (Leningrad, 1982), pp. 97–142 [in Russian].Google Scholar
  4. 4.
    A. N. Turkin, in Proceedings of the Symposium on Coherent Optical Radiation of Semiconductor Compounds and Structures, Zvenigorod, 2007 (RIIS FIAN, Moscow, 2007), p. 145.Google Scholar
  5. 5.
    I. N. Zavestovskaya, P. G. Eliseev, O. N. Krokhin, “Analysis of the mechanisms of light beam absorption in transparent materials under ultrashort pulses laser action,” in Book of Abstracts of the 16th International Laser Physics Workshop, Leon, Mexico, 2007 (Moscow University Press, 2007), p. 159.Google Scholar
  6. 6.
    I. N. Zavestovskaya, P. G. Eliseev, O. N. Krokhin, and N. A. Men’kova, Appl. Phys. A 92, 903 (2008).CrossRefADSGoogle Scholar
  7. 7.
    P. G. Eliseev, O. N. Krokhin, and I. N. Zavestovskaya, Appl. Surf. Sci. 248, 313 (2005).CrossRefADSGoogle Scholar
  8. 8.
    K. Ozono, M. Obara, A. Usui, and H. Sunakawa, Opt. Commun. 189, 103 (2001).CrossRefADSGoogle Scholar
  9. 9.
    T. Kim, H. S. Kim, M. Hetterich, et al., Mat. Sci. Eng. B: Solid State Mater Adv. Technol. 82, 262 (2001).CrossRefGoogle Scholar
  10. 10.
    L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964).Google Scholar
  11. 11.
    Yu. A. Il’inskii and L. V. Keldysh, Electromagnetic Response of Material Media (Plenum, New York, 1994).CrossRefGoogle Scholar
  12. 12.
    L. Keldysh, “Multiphoton Excitation of Semiconductors by Very Short Pulses” (private communication), (2000).Google Scholar
  13. 13.
    P.G. Eliseev, N. A. Kozlovskaya, O. N. Krokhin, and I.N. Zavestovskaya, AIPConf.Proc. 1278, 143 (2010).Google Scholar
  14. 14.
    E.G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, Phys.Plasmas 9, 949 (2002).CrossRefADSGoogle Scholar
  15. 15.
    D. Du et al., Appl. Phys. Lett. 64, 3071 (1994).CrossRefADSGoogle Scholar
  16. 16.
    M. V. Ammosov, N. B. Delone, and V. P. Krainov, Zh. Eksp. Teor. Fiz. 91, 2008 (1986) [Sov. Phys. JETP 64, 1191 (1986)].Google Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • I. N. Zavestovskaya
    • 1
    • 2
  • N. A. Kozlovskaya
    • 1
  • O. N. Krokhin
    • 1
    • 2
    Email author
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University “MEPhI”MoscowRussia

Personalised recommendations