Bulletin of the Lebedev Physics Institute

, Volume 42, Issue 2, pp 48–54 | Cite as

Study of electromagnetic field surface states in photonic crystals using the finite-difference method

  • K. I. Zaitsev
  • V. S. GorelikEmail author
  • G. M. Katyba
  • S. O. Yurchenko


The properties of electromagnetic field surface states in globular photonic crystals are analyzed using numerical solution of Maxwell equations by the finite-difference method. The spatial distributions of the optical radiation intensity near the photonic crystal surface are obtained. A significant redistribution of the field strength in the crystal bulk, accompanied by the appearance of high-intensity local peaks, is shown. It was found that the maximum local intensity of radiation is observed when the exciting radiation wavelength coincides with the crystal band gap position. In this case, the average electromagnetic wave intensity rapidly decreases from the surface to the photonic crystal depth.


photonic crystal surface states FDTD simulation band gap dispersion curve 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. P. Bykov, Zh. Eksp. Teor. Fiz. 35, 269 (1972).Google Scholar
  2. 2.
    V. S. Gorelik, Kvant. Elektron. 37, 409 (2007).CrossRefADSGoogle Scholar
  3. 3.
    K. M. Ho, C. T. Chan, and C. M. Soukoulis, Phys. Rev. Lett. 65, 3152 (1990).CrossRefADSGoogle Scholar
  4. 4.
    E. Yablonovitch and T. J. Gmitter, Phys. Rev. Lett. 67, 2295 (1991).CrossRefADSGoogle Scholar
  5. 5.
    R. M. Hornreich and S. Shtrikman, Phys. Rev. B 49, 10914 (1994).CrossRefADSGoogle Scholar
  6. 6.
    J. Sajeev, Phys. Rev. Lett. 58, 2486 (1987).CrossRefGoogle Scholar
  7. 7.
    M. Soljacic and J. D. Joannopoulos, Nature Mater. 3, 211 (2004).CrossRefADSGoogle Scholar
  8. 8.
    S. Fan, S. G. Johnson, J. D. Joannopoulos, et al., J. Opt. Soc. Am. B 18, 162 (2001).CrossRefADSGoogle Scholar
  9. 9.
    E. Chow, S. Y. Lin, J. R. Wendt, et al., Opt. Lett. 26, 286 (2001).CrossRefADSGoogle Scholar
  10. 10.
    J. C. Knight, T. A. Birks, P. St. J. Russell, and D.M. Atkin, Opt. Lett. 21, 1547 (1996).CrossRefADSGoogle Scholar
  11. 11.
    J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).CrossRefGoogle Scholar
  12. 12.
    F. Benabid, F. Couny, J. C. Knight, et al., Nature 434, 488 (2005).CrossRefADSGoogle Scholar
  13. 13.
    V. Berger, Phys. Rev. Lett. 81, 4136 (1998).CrossRefADSGoogle Scholar
  14. 14.
    A. V. Balakin, V. A. Bushuev, N. I. Koroteev, et al., Opt. Lett. 24, 793 (1999).CrossRefADSGoogle Scholar
  15. 15.
    A. A. Fedyanina, O. A. Aktsipetrov, D. A. Kurdyukov, et al., Appl. Phys. Lett. 87, 151111 (2005).CrossRefADSGoogle Scholar
  16. 16.
    A. V. Balakin, V. A. Bushuev, B. I. Mantsyzov, et al., Phys. Rev. E 63, 466091 (2001).CrossRefGoogle Scholar
  17. 17.
    A. V. Andreev, A. V. Balakin, A. B. Kozlov, et al., J.Opt. Soc.Am. B:Opt. Phys. 19, 1865 (2002).CrossRefADSGoogle Scholar
  18. 18.
    A. V. Andreev, A. V. Balakin, A. B. Kozlov, et al., J.Opt. Soc.Am. B:Opt. Phys. 19, 2083 (2002).CrossRefADSGoogle Scholar
  19. 19.
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).CrossRefADSGoogle Scholar
  20. 20.
    N.A.R. Bhat and J. E. Sipe, Phys. Rev. E 64, 056604 (2001).CrossRefADSGoogle Scholar
  21. 21.
    K. Rivoire, S. Buckley, Y. Song, et al., Phys. Rev. B 85, 045319 (2012).CrossRefADSGoogle Scholar
  22. 22.
    D. N. Sob’yanin, Phys. Rev. E 88, 022132 (2013).CrossRefADSGoogle Scholar
  23. 23.
    J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz, Nature 468, 545 (2010).CrossRefADSGoogle Scholar
  24. 24.
    N. F. Bunkin, V. S. Gorelik, and V. V. Filatov, Phys. Wave Phenom. 18, 90 (2010).CrossRefADSGoogle Scholar
  25. 25.
    E. L. Ivchenko and A. N. Poddubny, Phys. Solid State 55, 905 (2013).CrossRefADSGoogle Scholar
  26. 26.
    V. V. Filatov and V. S. Gorelik, Kratkie Soobshcheniya po Fizike 37(2), 42 (2010) [Bulletin of the Lebedev Physics Institute 37, 56 (2010)].Google Scholar
  27. 27.
    A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyanskii, Usp. Fiz. Nauk 53, 243 (2010).CrossRefGoogle Scholar
  28. 28.
    J. Klos, Phys. Rev. B 76, 165125 (2007).CrossRefADSGoogle Scholar
  29. 29.
    N. Malkova and C. Z. Ning, Phys. Rev. B 73, 113113 (2006).CrossRefADSGoogle Scholar
  30. 30.
    N. Malkova and C. Z. Ning, Phys. Rev. B 76, 045305 (2007).CrossRefADSGoogle Scholar
  31. 31.
    K. Yee, IEEE Trans Antennas Propag 14, 302 (1966).CrossRefADSzbMATHGoogle Scholar
  32. 32.
    Allen Taflove and Susan C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, London, 2005).Google Scholar
  33. 33.
    Y. Hao and R. Mittra, FDTD Modeling of Metamaterials: Theory and Applications (Artech House, Boston, 2009).Google Scholar
  34. 34.
    J. B. Schneider, Understanding the Finite-Difference Time-Domain Method,
  35. 35.
    K. I. Zaitsev, V. E. Karasik, I. N. Fokina, and S. A. Koroleva, “Study of the Applicability of Terahertz Imaging Systems to Medical Diagnostics, ” Vestnik MGTU. Ser.: Priborostroenie, No. 4, 114 (2012).Google Scholar
  36. 36.
    K. I. Zaytsev, G. M. Katyba, E. V. Yakovlev, et al., J. Appl. Phys. 115, 213505 (2014).CrossRefADSGoogle Scholar
  37. 37.
    K. I. Zaytsev, V. E. Karasik, I. N. Fokina, and V. I. Alekhnovich, Opt. Eng. 52, 068203 (2013).CrossRefADSGoogle Scholar
  38. 38.
    I. N. Fokina, K. I. Zaytsev, V. E. Karasik, and K. P. Tsapenko, Proc. SPIE 8846, 88460A (2013).CrossRefADSGoogle Scholar
  39. 39.
    A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (Wiley, New York, 1984).Google Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • K. I. Zaitsev
    • 1
  • V. S. Gorelik
    • 1
    • 2
    Email author
  • G. M. Katyba
    • 1
  • S. O. Yurchenko
    • 1
  1. 1.Bauman State Technical UniversityMoscowRussia
  2. 2.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations