Bulletin of the Lebedev Physics Institute

, Volume 40, Issue 3, pp 68–73 | Cite as

Diagnostics of heterostructures of resonant-tunneling diodes during epitaxial growth. II. Monitoring techniques based on reflection method

  • I. P. Kazakov
  • M. A. Bazalevskii
  • V. V. Kapaev
  • V. I. Tsekhosh
Article
  • 64 Downloads

Abstract

It is shown that the reflection methods, in particular, the reflection anisotropy method, can be efficiently used for in situ studying and monitoring the growth of heterostructures with layers thinner than 10 monolayers. A change in the layer composition at direct GaAs/AlAs heterointerfaces of the active region of the resonant-tunneling diode is recorded by the reflection anisotropy method with a thickness resolution of ∼1 monolayer immediately during the growth. To estimate the quality of the formed active region of the resonant-tunneling diode, comparative reflection anisotropy spectroscopy is used.

Keywords

resonant-tunneling diode heterostructure molecular-beam epitaxy reflection anisotropy spectroscopy monolayer resolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. L. Berkovits, L. F. Ivantsov, V. A. Kiselev, and I. V. Makarenko, Pisma Zh. Eksp. Teor. Fiz. 41, 453 (1985).Google Scholar
  2. 2.
    D. E. Aspnes and A. A. Studna, Phys. Rev. Lett. 54, 1956 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    Optical Characterization of Epitaxial Semiconductor Layers, Ed. by G. Bauer and W. Richter (Springer-Verlag, Heidelberg, 1996).Google Scholar
  4. 4.
    J. P. Harbison, D. E. Aspnes, A. A. Studna, et al., Appl. Phys. Lett. 52, 2046 (1988).ADSCrossRefGoogle Scholar
  5. 5.
    I. P. Kazakov, M. A. Bazalevskii, V. V. Kapaev, and V. I. Tsekhosh, Kratkie Soobshcheniya po Fizike FIAN 39(10), 14 (2012) [Bulletin of the Lebedev Physics Institute 39, 284 (2012)].Google Scholar
  6. 6.
    L. F. Lastras-Martinez, D. Ronnow, P V. Santos, et al., Phys. Rev. B 64, 245303 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    J. P. Silveira and F. Briones, J. Cryst. Growth 201/202, 113 (1999).CrossRefGoogle Scholar
  8. 8.
    D. E. Aspnes, J. P. Harbison, A. A. Studna, et al., J. Vac. Sci. Technol. B 6, 1127 (1988).CrossRefGoogle Scholar
  9. 9.
    O. Hunderli, J.-T. Zettler, and K. Haberland, Thin Solid Films 472, 261 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    Ye Xiaoling, Y. Chen, Xu Bo, et al., J. Appl. Phys. 27, 297 (2004).Google Scholar
  11. 11.
    I. P. Kazakov, E. V. Glazyrin, S. A. Savinov, et al., Fiz. Tekh. Poluprovodn. 44, 1489 (2010) [Semiconductors 44, 1441 (2010)].Google Scholar
  12. 12.
    Lay Tec, Newsletter No. 75, March 2011; http://www.laytec.de Google Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  • I. P. Kazakov
    • 1
  • M. A. Bazalevskii
    • 1
  • V. V. Kapaev
    • 1
  • V. I. Tsekhosh
    • 1
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations