Bulletin of the Lebedev Physics Institute

, Volume 35, Issue 4, pp 104–110 | Cite as

Heterogenous media with a negative acoustic refractive index

  • E. A. Vinogradov
  • N. V. Suyazov
  • K. F. Shipilov


We analyzed the realization conditions and the parameters of acoustic media suitable for realization of the negative refraction of sound waves due to multiple resonance scattering by spherical inclusions. The frequency ranges of resonant transparency windows are calculated in which the effective compressibilities and densities assume negative values and the relative level of the radiative loss is rather low.


Helmholtz Equation LEBEDEV Physic Institute Negative Refraction Double Negativeness Transparency Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. B. Pendry et al., Phys. Rev. Lett. 76, 4773 (1996).CrossRefADSGoogle Scholar
  2. 2.
    D. R. Smith, N. Kroll, Phys. Rev. Lett. 85, 2933 (2000).CrossRefADSGoogle Scholar
  3. 3.
    V. G. Veselago, Usp. Fiz. Nauk 92, 517 (1967).Google Scholar
  4. 4.
    D. R. Smith et al., Phys. Rev. Lett. 84, 4184 (2000).CrossRefADSGoogle Scholar
  5. 5.
    R. A. Shelby, D. R. Smith, S. Shultz, Science 292, 77 (2001).CrossRefADSGoogle Scholar
  6. 6.
    J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).CrossRefADSGoogle Scholar
  7. 7.
    V. P. Drachev et al., Laser Phys. Lett. 3, 49 (2006).CrossRefGoogle Scholar
  8. 8.
    W. Cai et al., Opt. Express 15, 3333 (2007).CrossRefADSGoogle Scholar
  9. 9.
    J. Li, C. T. Chan, Phys. Rev. E 70, 055602 (2004).Google Scholar
  10. 10.
    P. Shen, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena (Academic, New York, 1995).Google Scholar
  11. 11.
    Z. Lui, X. Zhang, Y. Mao, et al., Science 289, 1734 (2000).CrossRefADSGoogle Scholar
  12. 12.
    L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 3rd English ed. (Nauka, Moscow, 1987; Pergamon Press, Oxford, 1987).Google Scholar

Copyright information

© Allerton Press, Inc. 2008

Authors and Affiliations

  • E. A. Vinogradov
    • 1
  • N. V. Suyazov
    • 1
  • K. F. Shipilov
    • 1
  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations