Skip to main content
Log in

Sulfur Removal from High-Sulfur Bauxite during the Bayer Process

  • METALLURGY OF NONFERROUS METALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

This study investigates the removal of sulfur from high-sulfur bauxite via zinc addition during the Bayer process. The results show that \({{{\text{S}}}_{{\text{2}}}}{\text{O}}_{{\text{3}}}^{{2 - }}\), \({\text{SO}}_{{\text{3}}}^{{2 - }}\), and \({\text{SO}}_{{\text{4}}}^{{2 - }}\) are first reduced to S2–, and after adding zinc, the S2– enters into the red mud in the form of ZnS. So, the different valence sulfur states (S2–, \({{{\text{S}}}_{{\text{2}}}}{\text{O}}_{{\text{3}}}^{{2 - }}\), \({\text{SO}}_{{\text{3}}}^{{2 - }}\), and \({\text{SO}}_{{\text{4}}}^{{2 - }}\)) in the sodium aluminate solution can be effectively removed by adding zinc during the digestion process. The kinetics analysis results indicate that the apparent activation energy is 10.546 kJ/mol, and sulfur removal is controlled by the internal diffusion of the solid film. Increasing the temperature, time, and zinc concentration and decreasing the bauxite particle size are beneficial to the removal of sulfur. This is a new and effective method of sulfur removal by adding zinc during the digestion process, and a reasonable process of alumina production from high-sulfur bauxite is developed and described. The results shed some light on the removal of sulfur from high-sulfur bauxite during the alumina production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Gu, F.Q., Li, G.H., Peng, Z.W., Luo, J., Deng, B.N., Rao, M.J., Zhang, Y.B., and Jiang, T., Upgrading diasporic bauxite ores for iron and alumina enrichment based on reductive roasting, JOM, 2018, vol. 70, no. 9, pp. 1893–1901.

    Article  CAS  Google Scholar 

  2. Liu, Z.W., Yan, H.W., and Ma, W.H., Sulfur removal of high-sulfur bauxite, Min., Metall. Explor., 2020, vol. 37, no. 5, pp. 1617–1626.

    Google Scholar 

  3. Han, G.H., Su, S.P., Huang, Y.F., Peng, W.J., Cao, Y.J., and Liu, J.T., An insight into flotation chemistry of pyrite with isomeric xanthates: A combined experimental and computational study, Minerals, 2018, vol. 8, no. 4, pp. 1–16.

    Google Scholar 

  4. Abikenova, G.K., Kovzalenko, V.A., Ambarnikova, G.A., and Ibragimov, A.T., Investigation of the effect and behavior of sulfur compounds on the technological cycle of alumina production, Russ. J. Non-Ferrous Met., 2008, vol. 49, no. 2, pp. 91–96.

    Article  Google Scholar 

  5. Lou, Z.N., Xiong, Y., Feng, X.D., Shan, W.J., and Zhai, Y.C., Study on the roasting and leaching behavior of high-sulfur bauxite using ammonium bisulfate, Hydrometallurgy, 2016, vol. 165, pp. 306–311.

    Article  CAS  Google Scholar 

  6. Hu, X.L., Chen, W.M., and Xie, Q.L., Desulfuration of high sulfur bauxite by oxidation roasting, J. Cent. South Univ. Sci. Technol., 2010, vol. 41, no. 3, pp. 852–858.

    CAS  Google Scholar 

  7. Lu, D., Lv, G.Z., Zhang, T.A., Zhang, W.G., Wang, L., and Wang, Y.X., Roasting pre-treatment of high-sulfur bauxite for sulfide removal and digestion performance of roasted ore, Russ. J. Non-Ferrous Met., 2018, vol. 59, no. 5, pp. 493–501.

    Article  Google Scholar 

  8. Chimonyo, W., Corin, K.C., Wiese, J.G., and O’Connor, C.T., Redox potential control during flotation of a sulphide mineral ore, Miner. Eng., 2017, vol. 110, pp. 57–64.

    Article  CAS  Google Scholar 

  9. Bulut, G., Arslan, F., and Atak, S., Flotation behaviors of pyrites with different chemical compositions, Miner. Metall. Process., 2004, vol. 21, no. 2, pp. 86–92.

    CAS  Google Scholar 

  10. Owusu, C., Quast, K., and Addai-Mensah, J., The use of canola oil as an environmentally friendly flotation collector in sulphide mineral processing, Miner. Eng., 2016, vol. 98, pp. 127–136.

    Article  CAS  Google Scholar 

  11. Taguta, J., O’Connor, C.T., and McFadzean, B., The effect of the alkyl chain length and ligand type of thiol collectors on the heat of adsorption and floatability of sulphide minerals, Miner. Eng., 2017, vol. 110, pp. 145–152.

    Article  CAS  Google Scholar 

  12. Awe, S.A., Sundlcvist, J.E., and Sandstrom, A., Formation of sulphur oxyanions and their influence on antimony electrowinning from sulphide electrolytes, Miner. Eng., 2013, vol. 53, pp. 39–47.

    Article  CAS  Google Scholar 

  13. Gong, X.Z., Wang, Z., Zhuang, S.Y., Wang, D., Wang, Y.H., and Wang, M.Y., Roles of electrolyte characterization on bauxite electrolysis desulfurization with regeneration and recycling, Metall. Mater. Trans. B, 2017, vol. 48, no. 1, pp. 726–732.

    Article  CAS  Google Scholar 

  14. Helms, H., Schlomer, E., and Jansen, W., Oscillation phenomena during the electrolysis of alkaline sulfide solutions on platinum electrodes, Monatsh. Chem., 1998, vol. 129, nos. 6–7, pp. 617–623.

    CAS  Google Scholar 

  15. Gong, X.Z., Wang, Z., Zhao, L.X., Zhang, S., Wang, D., and Wang, M.Y., Competition of oxygen evolution and desulfurization for bauxite electrolysis, Ind. Eng. Chem. Res., 2017, vol. 56, no. 21, pp. 6136–6144.

    Article  CAS  Google Scholar 

  16. Marini, S., Salvi, P., Nelli, P., Pesenti, R., Villa, M., Berrettoni, M., Zangari, G., and Kiros, Y., Advanced alkaline water electrolysis, Electrochim. Acta, 2012, vol. 82, pp. 384–391.

    Article  CAS  Google Scholar 

  17. Blight, K., Ralph, D.E., and Thurgate, S., Pyrite surfaces after bio-leaching: a mechanism for bio-oxidation, Hydrometallurgy, 2000, vol. 58, pp. 227–237.

    Article  CAS  Google Scholar 

  18. Sun, J., Dai, X.H., Liu, Y.W., Peng, L., and Ni, B.J., Sulfide removal and sulfur production in a membrane aerated biofilm reactor: Model evaluation, Chem. Eng. J., 2017, vol. 309, pp. 454–462.

    Article  CAS  Google Scholar 

  19. Wen, S.L., Hu, K.Q., Chen, Y.C., and Hu, Y.Y., The effects of Fe2+ on sulfur-oxidizing bacteria (SOB) driven autotrophic denitrification, J. Hazard. Mater., 2019, vol. 373, pp. 359–366.

    Article  CAS  Google Scholar 

  20. Cheng, Y.Q., Chen, Y.L., Lu, J.C., Nie, J.X., and Liu, Y., Fenton treatment of bio-treated fermentation-based pharmaceutical wastewater: removal and conversion of organic pollutants as well as estimation of operational costs, Environ. Sci. Pollut. Res., 2018, vol. 25, no. 12, pp. 12083–12095.

    Article  CAS  Google Scholar 

  21. Viviantira, E., Wan, C.L., Wong, B.T., and Lee, D.J., Denitrifying sulfide removal 16 with methanogenic culture, J. Taiwan Inst. Chem. Eng., 2012, vol. 43, no. 3, pp. 374–385.

    Article  CAS  Google Scholar 

  22. Liu, Z.W., Li, D.Y., Ma, W.H., Yan, H.W., Xie, K.Q., Zheng, L.C., and Li, P.F., Sulfur removal by adding aluminum in the bayer process of high-sulfur bauxite, Miner. Eng., 2018, vol. 119, pp. 76–81.

    Article  CAS  Google Scholar 

  23. Safarzadeh-Amiri, A., Walton, J., Mahmoud, I., and Sharifi, N., Iron(III)-polyphosphates as catalysts for the liquid redox sulfur recovery process, Appl. Catal., B, 2017, vol. 207, pp. 424–428.

    Article  CAS  Google Scholar 

  24. Liu, Z.W., Ma, W.H., Yan, H.W., Xie, K.Q., Li, D.Y., Zheng, L.C., and Li, P.F., Sulfur removal with active carbon supplementation in digestion process, Hydrometallurgy, 2018, vol. 179, pp. 118–124.

    Article  CAS  Google Scholar 

  25. Letícia, P.D.M., Patrícia, F.C., Mariana, M., Paula, C.S.G., Silvana, D.Q.S., Leandro, V.A.G., and Mônica, C.T., Simultaneous removal of sulfate and arsenic using immobilized nontraditional SRB mixed culture and alternative low-cost carbon sources, Chem. Eng. J., 2018, vol. 334, pp. 1630–1641.

    Article  Google Scholar 

  26. Li, X.B., Li, C.Y., Peng, Z.H., Liu, G.H., Zhou, Q.S., and Qi, T.G., Interaction of sulfur with iron compounds in sodium aluminate solutions, Trans. Nonferrous Met. Soc. China, 2015, vol. 25, no. 2, pp. 608–614.

    Article  CAS  Google Scholar 

  27. Kuznetsov, S.I., Grachev, V.V., and Tyurin, N.G., Interaction of iron and sulfur in alkaline aluminate solutions, Zh. Prikl. Khim., 1975, vol. 48, no. 4, pp. 748−750.

    CAS  Google Scholar 

  28. Li, X.B., Niu, F., Tan, J., Liu, G.H., Qi, T.G., Peng, Z.H., and Zhou, Q.S., Removal of S2− ion from sodium aluminate solutions with sodium ferrite, Trans. Nonferrous Met. Soc. China, 2016, vol. 26, no. 5, pp. 1419–1424.

    Article  Google Scholar 

  29. Dixon, D.G. and Long, H., Pressure oxidation of pyrite in sulfuric acid media: a kinetic study, Hydrometallurgy, 2004, vol. 73, pp. 335–349.

    Article  Google Scholar 

  30. Choi, A.E.S., Roces, S., Dugos, N., Futalan, C.M., Lin, S.S., and Wan, M.W., Optimization of ultrasound-assisted oxidative desulfurization of model sulfur compounds using commercial ferrate (VI), J. Taiwan Inst. Chem. Eng., 2014, vol. 45, no. 6, pp. 2935–2942.

    Article  CAS  Google Scholar 

  31. Podkrajsek, B., Grgic, I., and Tursic, J., Determination of sulfur oxides formed during the S(IV) oxidation in the presence of iron, Chemosphere, 2002, vol. 49, no. 3, pp. 271–277.

    Article  CAS  Google Scholar 

  32. Liu, Z.W., Li, W.X., Ma, W.H., Yin, Z.L., and Wu, G.B., Conversion of sulfur by wet oxidation in the Bayer process, Metall. Mater. Trans. B, 2015, vol. 46, no. 4, pp. 1702–1708.

    Article  CAS  Google Scholar 

  33. Zhou, X.J., Yin, J.G., Chen, Y.L., Xia, W.T., Xiang, X.Y., and Yuan, X.L., Simultaneous removal of sulfur and iron by the seed precipitation of digestion solution for high-sulfur bauxite, Hydrometallurgy, 2018, vol. 181, pp. 7–15.

    Article  CAS  Google Scholar 

  34. Wang, D.L., Light Metal Metallurgical Analysis, Beijing: Metallurgical Industry Press, pp. 67–69.

  35. Pandey, S.K., Pandey, S., Parashar, V., Yadav, R.S., Mehrotra, G.K., and Pandey, A.C., Bandgap engineering of colloidal zinc oxysulfide via lattice substitution with sulfur, Nanoscale, 2014, vol. 6, no. 3, pp. 1602–1606.

    Article  CAS  Google Scholar 

  36. Bendikov, T.A., Yarnitzky, C., and Licht, S., Energetics of a zinc–sulfur fuel cell, J. Phys. Chem. B, 2002, vol. 106, no. 11, pp. 2989–2995.

    Article  CAS  Google Scholar 

  37. Fu, H., Chen, C.Y., Li, J.Q., and Zhang, X.Q., Effect of sodium thiosulfate on corrosion behavior of Q235 steel in alkaline solution, Hot Work. Technol., 2017, vol. 46, no. 8, pp. 87–90, 93.

  38. Wu, M.M., Chang, B.W., Lim, T.T., Oh, W.D., Lei, J.X., and Mi, J., High-sulfur capacity and regenerable Zn-based sorbents derived from layered double hydroxide for hot coal gas desulfurization, J. Hazard. Mater., 2018, vol. 360, pp. 391–401.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge the support received from the National Natural Science Foundation of China (nos. 22068021 and 52064030) and the Project of State Key Research and Development Plan (2019YFC1904205).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhanwei Liu, Hengwei Yan, Mengnan Li or Shuxin Liu.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhanwei Liu, Yan, H., Li, M. et al. Sulfur Removal from High-Sulfur Bauxite during the Bayer Process. Russ. J. Non-ferrous Metals 63, 26–36 (2022). https://doi.org/10.3103/S1067821222010126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821222010126

Keywords:

Navigation