Skip to main content
Log in

Structure and Mechanical Properties of Al–Ca–Mn–Fe–Zr–Sc Eutectic Aluminum Alloy after Warm Equal Channel Angular Pressing

  • PHYSICAL METALLURGY AND HEAT TREATMENT
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Recently developed multicomponent eutectic alloys based on Al–Ca are promising for practical application, since they are characterized by low density and high corrosion resistance and are hi-tech in casting and easily deformed in annealed state. These alloys are strengthened by alloying with Mn, Fe, Zr, Sc, and other elements. The ultrafine grained state in aluminum alloys is achieved by severe plastic deformations, for instance, equal channel angular pressing (ECAP), significantly improving their mechanical properties. In this regard, this work is aimed at analyzing the influence of warm ECAP on the structure, mechanical properties, and thermal stability of eutectic aluminum alloy, wt %: Al–3.5Ca–0.9Mn–0.5Fe–0.1Zr–0.1Sc. ECAP is performed on as-cast alloy specimens with a diameter of 20 mm (400°C, route BC, channel intersection angle: 110°, number of passes N = 6). It is been demonstrated that, as a consequence of ECAP, a developed substructure is generated in the alloy with a high density of dislocations and deposition of Al6(Mn, Fe) and Al3Sc nanosized particles, accompanied by the fragmentation of primary Al6(Mn, Fe) coarse particles and eutectic Al4Ca particles. Such a change in structure during ECAP leads to the significant strengthening of the alloy: its strength increased 1.5–2.0 times and relative elongation decreased 1.3 times in a specimen of longitudinal cross section, slightly changing in the transversal one in comparison with the initial state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Polmear, I., Light Alloys. From Traditional Alloys to Nanocrystals, Oxford: Elsevier, 2017.

    Google Scholar 

  2. Kaufman, J.G. and Rooy, E.L., Aluminum Alloy Castings: Properties, Processes and Applications, Materials Park, OH: ASM Int., 2004.

    Book  Google Scholar 

  3. Glazoff, M., Zolotorevsky, V., and Belov, N., Casting Aluminum Alloys, Oxford: Elsevier, 2007.

    Google Scholar 

  4. Nalivaiko, A.Yu., Arnautova, A.N., Zmanovsky, S.V., Ozherelkov, D.Yu., Shurkin, P.K., and Gromov, A.A., Al–Al2O3 powder composites obtained by hydrothermal oxidation method: Powders and sintered samples characterization, J. Alloys Compd., 2020, vol. 825, p. 154024. https://doi.org/10.1016/j.jallcom.2020.154024

    Article  CAS  Google Scholar 

  5. Swaminathan, K. and Padmanabhan, K.A., Tensile flow and fracture behaviour of a superplastic Al–Ca–Zn alloy, J. Mater. Sci., 1990, vol. 25, no. 11, pp. 4579–4586. https://doi.org/10.1007/BF01129909

    Article  CAS  Google Scholar 

  6. Belov, N.A., Naumova, E.A., Ilyukhin, V.D., and Doroshenko, V.V., Structure and mechanical properties of Al–6% Ca–1% Fe alloy foundry goods, obtained by die casting, Tsvetn. Met. (Moscow, Russ. Fed.), 2017, no. 3, pp. 69–75. https://doi.org/10.17580/tsm.2017.03.11

  7. Belov, N.A., Naumova, E.A., and Akopyan, T.K., Effect of calcium on structure, phase composition and hardening of Al–Zn–Mg alloys containing up to 12 wt % Zn, Mater. Res., 2015, vol. 18, no. 6, pp. 1384–1391. https://doi.org/10.1590/1516-1439.036415

    Article  CAS  Google Scholar 

  8. Belov, N.A., Batyshev, K.A., and Doroshenko, V.V., Microstructure and phase composition of the eutectic Al–Ca alloy, additionally alloyed with small additives of zirconium, scandium and manganese, Non-Ferrous Met. (Moscow, Russ. Fed.), 2017, no. 2, pp. 49–54. https://doi.org/10.17580/nfm.2017.02.09

  9. Belov, N.A., Naumova, E.A., Alabin, A.N., and Matveeva, I.A., Effect of scandium on structure and hardening of Al–Ca eutectic alloys, J. Alloys Compd., 2015, vol. 646, pp. 741–747. https://doi.org/10.1016/j.jallcom.2015.05.155

    Article  CAS  Google Scholar 

  10. Shurkin, P.K., Dolbachev, A.P., Naumova, E.A., and Doroshenko, V.V., Effect of iron on the structure, hardening and physical properties of the alloys of the Al–Zn–Mg–Ca system, Tsvetn. Met. (Moscow, Russ. Fed.), 2018, no. 5, pp. 69–76. https://doi.org/10.17580/tsm.2018.05.10

  11. Pereira, P.H.R., Huang, Y., and Langdon, T.G., Examining the thermal stability of an Al–Mg–Sc alloy processed by high-pressure torsion, Mater. Res., 2017, vol. 20, pp. 39–45. https://doi.org/10.1590/1980-5373-MR-2017-0207

    Article  Google Scholar 

  12. Ghosh, K.S., Gao, N., and Starink, M.J., Characterization of high pressure torsion processed 7150 Al–Zn–Mg–Cu alloy, Mater. Sci. Eng., A, 2012, vol. 552, pp. 164–171. https://doi.org/10.1016/j.msea.2012.05.026

    Article  CAS  Google Scholar 

  13. Lee, H.-J., Han, J.-K., Janakiraman, S., Ahn, B., Kawasakia, M., and Langdon, T.G., Significance of grain refinement on microstructure and mechanical properties of an Al-3% Mg alloy processed by high-pressure torsion, J. Alloys Compd., 2016, vol. 686, pp. 998–1007. https://doi.org/10.1016/j.jallcom.2016.06.194

    Article  CAS  Google Scholar 

  14. Orlov, D., Beygelzimer, Y., Synkov, S., Varyukhin, V., Tsuji, N., and Horita, Z., Plastic flow, structure and mechanical properties in pure Al deformed by twist extrusion, Mater. Sci. Eng., A, 2009, vol. 519, pp. 105–111. https://doi.org/10.1016/j.msea.2009.06.005

    Article  CAS  Google Scholar 

  15. Zha, M., Li, Y.-J., Mathiesen, R., Bjørge, R., and Roven, H.J., Microstructure, hardness evolution and thermal stability of binary Al-7Mg alloy processed by ECAP with intermediate annealing, Trans. Nonferrous Met. Soc. China, 2014, vol. 24, pp. 2301–2306. https://doi.org/10.3103/S1067821217020080

    Article  CAS  Google Scholar 

  16. Estrin, J., Murashkin, M., and Valiev, R., Ultrafine-grained aluminium alloys: processes, structural features and properties, in Fundamentals of Aluminium Metallurgy, Woodhead Publ., 2011, pp. 468–503. https://doi.org/10.1533/9780857090256.2.468

    Book  Google Scholar 

  17. Shaeri, M.H., Shaeri, M., Ebrahimi, M., Salehi, M.T., and Seyyedein, S.H., Effect of ECAP temperature on microstructure and mechanical properties of Al–Zn–Mg–Cu alloy, Prog. Nat. Sci.: Mater. Int., 2016, vol. 26, pp. 182–191. https://doi.org/10.1016/j.pnsc.2016.03.003

    Article  CAS  Google Scholar 

  18. Klevtsov, G.V., Valiev, R.Z., Kushnarenko, V.M., Klevtsova, N.A., Merson, E.D., and Pigaleva, I.N., Investigation into the corrosion rate and features of the samples made of nanostructured aluminum alloy in the H2S-containing medium, Russ. J. Non-Ferrous Met., 2017, vol. 58, no. 2, pp. 142–148. https://doi.org/10.3103/S1067821217020080

    Article  Google Scholar 

  19. Nikulin, S.A., Dobatkin, S.V., Khanzhin, V.G., Rogachev, S.O., and Chakushin, S.A., Effect of submicrocrystalline structure and inclusions on the deformation and failure of aluminum alloys and titanium, Met. Sci. Heat Treat., 2009, vol. 51, pp. 208–217. https://doi.org/10.1007/s11041-009-9153-5

    Article  CAS  Google Scholar 

  20. Horita, Z., Fujinami, T., Nemoto, M., and Langdon, T.G., Equal-channel angular pressing of commercial aluminum alloys: Grain refinement, thermal stability and tensile properties, Metall. Mater. Trans. A, 2000, vol. 31, pp. 691–701. https://doi.org/10.1007/s11661-000-0011-8

    Article  Google Scholar 

  21. Raab, G.J., Valiev, R.Z., Lowe, T.C., and Zhu, Y.T., Continuous processing of ultrafine grained Al by ECAP-Conform, Mater. Sci. Eng., A, 2004, vol. 382, pp. 30–34. https://doi.org/10.1016/j.msea.2004.04.021

    Article  CAS  Google Scholar 

  22. Angella, G., Bassani, P., Tuissi, A., Ripamonti, D., and Vedani, M., Microstructure evolution and aging kinetics of Al–Mg–Si and Al–Mg–Si–Sc alloys processed by ECAP, Mater. Sci. Forum, 2006, vols. 503–504, pp. 493–498. https://doi.org/10.4028/www.scientific.net/MSF.503-504.493

  23. Naumova, E.A., Belov, N.A., and Doroshenko, V.V., Investigation of the technological properties of eutectic Al–Ca–Mn–Fe–Si–Zr alloys, hardened without quenching, in Sovremennye dostizheniya v oblasti metallovedeniya, tekhnologii lit’ya, deformatsii, termicheskoi obrabotki i antikorrozionnoi zashchity legkikh splavov. Materialy Vserossiiskoi nauchno-tekhnicheskoi konferentsii (g. Moskva, 12 oktyabrya 2017 g.) (Proc. All-Russian Scientific and Technical Conference “Modern Achievements in the Field of Metal Science, Casting Technologies, Deformation, Heat Treatment and Anti-Corrosion Protection of Light Alloys” (Moscow, October 12, 2017)), Moscow: All-Russian Scientific Research Institute of Aviation Materials, 2017, pp. 209–220.

  24. Nikulin, S.A., Rogachev, S.O., Rozhnov, A.B., Li, E.V., and Li, A.V., Application of microsamples for evaluating the mechanical properties of zirconium alloys after high-temperature oxidation, Prochnost’ neodnorodnykh struktur—PROST-2016. Materialy VIII Evraziiskoi nauchno-praktakticheskoi konferentsii (Proc. VIII Eurasian Scientific and Practical Conference “Strength of Heterogeneous Structures—PROST-2016”), Moscow: National Univ. of Science and Technology MISiS, 2016, p. 200.

Download references

Funding

This work was supported by Russian Science Foundation, grant no. 20-19-00746.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. O. Rogachev, E. A. Naumova, R. D. Karelin, V. A. Andreev, M. M. Perkas, V. S. Yusupov or V. M. Khatkevich.

Ethics declarations

The authors declare that the presented data do not contain any conflict of interest.

Additional information

Translated by I. Moshkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogachev, S.O., Naumova, E.A., Karelin, R.D. et al. Structure and Mechanical Properties of Al–Ca–Mn–Fe–Zr–Sc Eutectic Aluminum Alloy after Warm Equal Channel Angular Pressing. Russ. J. Non-ferrous Metals 62, 293–301 (2021). https://doi.org/10.3103/S1067821221030123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821221030123

Keywords:

Navigation