Skip to main content
Log in

Determination of the Growth Time Period of Loose Zinc Deposit Using Interval Analysis Methods

  • PRODUCTION PROCESSES AND PROPERTIES OF POWDERS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

A characteristic of obtaining metal powders by direct current electrolysis is changes in the morphology of particles over the loose deposit layer thickness up to the formation of large spherulites. Deposits should be periodically removed from the cathode in order to obtain a powder with homogeneous composition. This paper justifies the choice of the parameter describing the change in loose deposit properties and proposes a method for determining the periodicity of its removal from the cathode. Loose zinc deposits were obtained at 25°C from zincate electrolyte containing 0.3 mol L–1 of ZnO and 4 mol L–1 of NaOH at a current setpoint exceeding six times the limiting diffusion current calculated using the smooth electrode. Electrode potential, deposit thickness and evolved hydrogen volume were measured directly in the process of electrolysis. Current redistribution between the metal reduction and hydrogen evolution leads to a change in the structure of loose deposit particles. It is shown that the differential current efficiency of zinc is the parameter describing the change in the loose zinc deposit density. Its value should not exceed 0.96, in order to ensure deposition of loose deposit with homogeneous properties. A further increase in current efficiency will lead to the formation of aggregates at the deposit growth front. It is proposed to determine the periodicity of loose deposit removal from the cathode using the empirical equation for the time dependency of differential current efficiency of zinc. The mathematical and statistical analysis of the data obtained in six replicates was carried out. The interval approach made it possible to significantly narrow the range of permissible differential current efficiency values and, as a consequence, to determine empirical equation coefficients with acceptable accuracy and calculate the growth time period of a deposit with homogeneous structure. The obtained approach can be used to estimate the time period of loose metal deposition accompanied by hydrogen evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Neikov, O.D., Naboychenko, S.S., and Yefimov, N.A., Handbook of Non-Ferrous Metal Powders: Technologies and Applications, Elsevier, 2019. https://doi.org/10.1016/C2014-0-03938-X

    Book  Google Scholar 

  2. Petrii, O.A., Electrosynthesis of nanostructures and nanomaterials, Russ. Chem. Rev., 2015, vol. 84, no. 2, pp. 159–193. https://doi.org/10.1070/RCR4438

    Article  CAS  Google Scholar 

  3. Antsiferov, V.N., Bobrov, G.V., and Druzhinin, L.K., Poroshkovaya metallurgiya i napylennye pokrytiya (Powder Metallurgy and Sputtered Coatings), Moscow: Metallurgiya, 1987.

  4. Mattarozzi, L., Cattarin, S., Comisso, N., Gambirasi, A., Guerriero, P., Musiani, M., Vázquez-Gómez, L., and Verlato, E., Hydrogen evolution assisted electrodeposition of porous Cu–Ni alloy electrodes and their use for nitrate reduction in alkali, Electrochim. Acta, 2014, vol. 140, pp. 337–344. https://doi.org/10.1016/j.electacta.2014.04.048

    Article  CAS  Google Scholar 

  5. Shin, H.-C. and Liu, M., Three-dimensional porous copper-tin alloy electrodes for rechargeable lithium batteries, Adv. Funct. Mater., 2005, vol. 15, pp. 582–586. https://doi.org/10.1002/adfm.200305165

    Article  CAS  Google Scholar 

  6. Blake, J.P., Lathe, A.J., and Suresh, K.B., Building with bubbles: the formation of high surface area honeycomb-like films via hydrogen bubble templated electrodeposition, Chem. Commun., 2015, vol. 51, pp. 4331–4346. https://doi.org/10.1039/C4CC06638C

    Article  CAS  Google Scholar 

  7. Ullah, S., Badshah, A., Ahmed, F., Raza, R., Altaf, A.A., and Hussain, R., Electrodeposited zinc electrodes for high current Zn/AgO bipolar batteries, Int. J. Electrochem. Sci., 2011, no. 6, pp. 3801–3811.

  8. Mojtahedi, M., Goodarzi, M., Sharifi, B., and Khaki, J.V., Effect of electrolysis condition of zinc powder production on zinc-silver oxide battery operation, Energy Convers. Manage., 2011, vol. 52, no. 4, pp. 1876–1880. https://doi.org/10.1016/j.enconman.2010.11.001

  9. Nekouei, R.K., Rashchi, F., and Amadeh, A.A., Using design of experiments in synthesis of ultra-fine copper particles by electrolysis, Powder Technol., 2013, vol. 237, pp. 165–171. https://doi.org/10.1016/j.powtec.2013.01.032

    Article  CAS  Google Scholar 

  10. Nekouei, R.K., Rashchi, F., and Ravanbakhsh, A., Copper nano-powder synthesis by electrolysis method in nitrate and sulfate solutions, Powder Technol., 2013, vol. 250, pp. 91–96. https://doi.org/10.1016/j.powtec.2013.10.012

    Article  CAS  Google Scholar 

  11. Nikolić, N.D., Vaštag, D.D., Živković, P.M., Jokić, B., and Branković, G., Influence of the complex formation on the morphology of lead powder particles produced by the electrodeposition processes, Adv. Powder Technol., 2013, vol. 24, no. 3, pp. 674–682. https://doi.org/10.1016/j.apt.2012.12.008

    Article  CAS  Google Scholar 

  12. Sharifi, B., Mojtahedi, M., Goodarzi, M., and Vahdati, K.J., Effect of alkaline electrolysis conditions on current efficiency and morphology of zinc powder, Hydrometallurgy, 2009, vol. 99, no. 1, pp. 72–76. https://doi.org/10.1016/j.hydromet.2009.07.003

    Article  CAS  Google Scholar 

  13. Ostanina, T.N., Rudoi, V.M., Patrushev, A.V., Darintseva, A.B., and Farlenkov, A.S., Modelling the dynamic growth of copper and zinc dendritic deposits under the galvanostatic electrolysis conditions, J. Electroanal. Chem., 2015, vol. 750, pp. 9–18. https://doi.org/10.1016/j.jelechem.2015.04.031

    Article  CAS  Google Scholar 

  14. Orhan, G. and Gezgin, J.G.G., Effect of electrolysis parameters on the morphologies of copper powders obtained at high current densities, J. Serb. Chem. Soc., 2012, vol. 77, no. 5, pp. 651–665. https://doi.org/10.1016/j.powtec.2010.03.003

    Article  CAS  Google Scholar 

  15. Nikolić, N.D., Branković, G., and Popov, K.I., Optimization of electrolytic process of formation of open and porous copper electrodes by the pulsating current (PC) regime, Mater. Chem. Phys., 2011, vol. 125, no. 3, pp. 587–594. https://doi.org/10.1016/j.matchemphys.2010.10.013

    Article  CAS  Google Scholar 

  16. Nikolić, N.D., Branković, G., and Pavlović, M.G., Correlate between morphology of powder particles obtained by the different regimes of electrolysis and the quantity of evolved hydrogen, Powder Technol., 2012, vol. 221, pp. 271–277. https://doi.org/10.1016/j.powtec.2012.01.014

    Article  CAS  Google Scholar 

  17. Nikolić, N.D., Branković, G., and Maksimović, V.M., Influence of potential pulse conditions on the formation of honeycomblike copper electrodes, J. Electroanal. Chem., 2009, vol. 635, pp. 111–119. https://doi.org/10.1016/j.jelechem.2009.08.005

    Article  CAS  Google Scholar 

  18. Pavlović, M.G., Pavlović, L.J., Maksimović, V.M., Nikolić, N.D., and Popov, K.I., Characterization and morphology of copper powder particles as a function of different electrolytic regimes, Int. J. Electrochem. Sci., 2010, vol. 5, no. 12, pp. 1862–1878.

    Google Scholar 

  19. Jagtap, R.N., Rakesh, N., Zaffar, H.S., and Malshe, V.C., Predictive power for life and residual life of the zinc rich primer coatings with electrical measurement, Prog. Org. Coat., 2007, vol. 58, no. 4, pp. 253–258. https://doi.org/10.1016/j.porgcoat.2006.08.015

    Article  CAS  Google Scholar 

  20. Kalendová, A., Effects of particle sizes and shapes of zinc metal on the properties of anticorrosive coatings, Prog. Org. Coat., 2003, vol. 46, no. 4, pp. 324–332. https://doi.org/10.1016/S0300-9440(03)00022-5

    Article  CAS  Google Scholar 

  21. Sokolovskaya, E.E., Osipova, M.L., Murashova, I.B., Darintseva, A.B., Savel’ev, A.M., and Mukhamadeev, F.F., Analysis of structural variations of the precipitate based on monitoring the industrial electrolysis of copper powders of various brands, Russ. J. Non-Ferrous Met., 2013, vol. 54, no. 6, pp. 497–503. https://doi.org/10.3103/S1067821213060291

    Article  Google Scholar 

  22. Ostanina, T.N., Rudoy, V.M., Nikitin, V.S., Darintseva, A.B., and Demakov, S.L., Change in the physical characteristics of the dendritic zinc deposits in the stationary and pulsating electrolysis, J. Electroanal. Chem., 2017, vol. 784, pp. 13–24. https://doi.org/10.1016/j.jelechem.2016.11.063

    Article  CAS  Google Scholar 

  23. Nikolić, N.D., Branković, G., Pavlović, M.G., and Popov, K.I., The effect of hydrogen co-deposition on the morphology of copper electrodeposits. II. Correlation between the properties of electrolytic solutions and the quantity of evolved hydrogen, J. Electroanal. Chem., 2008, vol. 621, no. 1, pp. 13–21. https://doi.org/10.1016/j.jelechem.2008.04.006

    Article  CAS  Google Scholar 

  24. Nicolić, N.D., Popov, K.I., Pavlović, L.J., and Pavlović, M.G., The effect of hydrogen codeposition on the morphology of copper electrodeosits. I. The concept of effective overpotential, J. Electroanal. Chem., 2006, vol. 588, no. 1, pp. 88–98. https://doi.org/10.1016/j.jelechem.2005.12.006

    Article  CAS  Google Scholar 

  25. Nikolić, N.D., Pavlović, Lj.J., Pavlović, M.G., and Popov, K.I., Morphologies of electrochemically formed copper powder particles and their dependence on the quantity of evolved hydrogen, Powder Technol., 2008, vol. 185, no. 3, pp. 195–201. https://doi.org/10.1016/j.powtec.2007.10.014

    Article  CAS  Google Scholar 

  26. Yakubova, T.V. and Murashova, I.B., Modeling of electro-crystallization of loose deposits from aqueous solution. Localization of hydrogen reduction reaction and ways for its removal, Elektrokhimiya, 1995, vol. 31, pp. 463–486.

    Google Scholar 

  27. Osipova, M.L., Murashova, I.B., Darintseva, A.B., and Onuchina, D.L., Current efficiency of dendritic copper deposit for PMS11 powder as a parameter determining its structure, Gal’vanotekh. Obrab. Poverkhn., 2012, vol. 19, no. 3, pp. 35–41.

    Google Scholar 

  28. Ostanina, T.N., Rudoi, V.M., Nikitin, V.S., Darintseva, A.B., Zalesova, O.L., and Porotnikova, N.M., Determination of the surface of dendritic electrolytic zinc powders and evaluation of its fractal dimension, Russ. J. Non-Ferrous Met., 2016, vol. 57, no. 1, pp. 47–51. https://doi.org/10.3103/S1067821216010120

    Article  Google Scholar 

  29. Diggle, J.W., Despić, A.R., and Bockris, J.O., The mechanism of the dendritic crystallization of zinc, J. Electrochem. Soc., 1969, vol. 116, no. 11, pp. 1503–1514. https://doi.org/10.1149/1.2411588

    Article  CAS  Google Scholar 

  30. R (Recommendations) no. 40.2.028-2003: The State System for Providing Uniqueness of Measuring. Recommendations on Generating the Calibration Characteristics. Estimation of Errors (Uncertainties) of Linear Calibration Characteristics by Using the Least Square Means Method, Moscow: Goststandart, 2003.

  31. Jaulin, L., Kieffer, M., Didrit, O., and Walter, E., Applied Interval Analysis, London: Springer, 2001.

    Book  Google Scholar 

  32. Shary, S.P., Finite-Dimensional Interval Analysis. http:// www.nsc.ru/interval/Library/InteBooks. Accessed September 1, 2019.

  33. Kumkov, S.I., An estimation problem of chemical process with confluent parameters: An interval approach, Reliab. Comput., 2016, vol. 22, pp. 15–25.

    Google Scholar 

  34. Kumkov, S.I. and Mikushina, Yu.V., Interval approach to identification of catalytic process parameters, Reliab. Comput., 2014, vol. 19, no. 2, pp. 197–214.

    Google Scholar 

Download references

Funding

This study was supported by the Government of the Russian Federation, regulation no. 211, state assignment no. 0836-2020-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Nikitin.

Additional information

Translated by R. Gumerov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, V.S., Ostanina, T.N., Kumkov, S.I. et al. Determination of the Growth Time Period of Loose Zinc Deposit Using Interval Analysis Methods. Russ. J. Non-ferrous Metals 61, 540–548 (2020). https://doi.org/10.3103/S1067821220050119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821220050119

Keywords:

Navigation