Skip to main content

Nanostructured Gradient Material Based on the Cu–Cr–W Pseudoalloy Fabricated by High-Energy Ball Milling and Spark Plasma Sintering

Abstract

Nanostructured mechanical composites of immiscible metals Cu, Cr, and 5–70 wt % W; nanostructured consolidated materials based on them; and Cu/Cu–Cr–W nanostructured gradient material with various W contents are fabricated in this work by combining short-term (up to 150 min) high-energy ball milling (HEBM) and spark plasma sintering (SPS). To fabricate Cu–Cr–W mechanical composites, HEBM of Cu + Cr + (5–70 wt %)W is performed using an Activator-2S planetary ball mill with a revolution rate of drums of 1388 rpm and a planetary disc of 694 rpm in argon for 150 min. The Cu–Cr–W mechanical composites are consolidated by SPS at temperatures of 800–1000°C and pressure of 50 MPa for 10 min. The nanostructured gradient sintered material based on Cu–Cr–W pseudoalloys is compacted layer-by-layer in the following sequence (from pure copper to pseudoalloy with an increase in the tungsten weight fraction): Cu/Cu–Cr–5% W/Cu–Cr–15% W/Cu–Cr–70% W and sintered at 800°C for 10 min. The crystal structure, microstructure, and properties of Cu–Cr–W mechanical composites and consolidated materials based on them are investigated depending on fabrication conditions. It is shown that the nanostructure formed in mechanical composites at the short-term HEBM stage (up to 150 min) is retained after SPS for all Cu–Cr–W (5–70 wt % W) compositions. The SEM and EDS data evidence that W (d ~ 20–100 nm) and Cr (d ~ 20–50 nm) refractory particles are homogeneously distributed in the material bulk (in a copper matrix). The hardness of consolidated Cu–Cr–W samples (15 wt %) formed from nanostructured powder mixtures (after 150-min HEBM) by SPS at t = 800°C exceeds the hardness of samples sintered from the mixture of initial components (without HEBM) by a factor of ~6. The hardness for the nanostructured Cu–Cr–70% W composition (tSPS = 1000°C) is higher by a factor of ~3 than for microcrystalline analogs. Samples Cu–Cr–15% W and Cu–Cr–70% W have the largest relative density up to 0.91. The resistivity of nanostructured Cu–Cr–W compositions exceeds this characteristic for microcrystalline samples approximately twofold. This can be caused by an increase in grain boundaries and the accumulation of various defects in the material at the HEBM stage. These results show the prospects of using the combination of short-term HEBM and subsequent SPS for the formation of consolidated nanocrystalline Cu–Cr–W composites and gradient materials based on them.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Myshkin, N.K., Konchits, V.V., and Braunovich, M., Elektricheskie kontakty (Electrical Contacts), Dolgoprudnyi: Intellekt, 2008.

  2. Slade, P., The vacuum interrupter contact, IEEE Trans. Compon., Hybrids,Manuf. Technol., 1984, vol. 7, no. 1, pp. 25–32.

    Google Scholar 

  3. Avramov, Yu.S. and Shlyapin, A.D., Novye kompozitsionnye materialy na osnove nesmeshivayushchikhsya komponentov: Poluchenie, struktura, svoistva (New Composite Materials Based on Immiscible Components: Preparation, Structure, Properties), Moscow: Moscow State Industrial Univ., 1999.

  4. Yang, Z., Zhang, Q., Wang, Q., Zhang, Ch., and Ding, B., Vacuum arc characteristics on nanocrystalline Cu–Cr alloys, Vacuum, 2006, vol. 81, pp. 545–549.

    CAS  Article  Google Scholar 

  5. Wei, X., Yu, D., Sun, Z., Yang, Z., Song, X., and Ding, B., Arc characteristics and microstructure evolution of W–Cu contacts during the vacuum breakdown, Vacuum, 2014, vol. 107, pp. 83–89.

    CAS  Article  Google Scholar 

  6. Shkodich, N.F., Rogachev, A.S., Vadchenko, S.G., Moskovskikh, D.O., Sachkova, N.V., Rouvimov, S., and Mukasyan, A.S., Bulk Cu–Cr nanocomposites by high-energy ball milling and spark plasma sintering, J. Alloys Compd., 2014, vol. 617, pp. 39–46.

    CAS  Article  Google Scholar 

  7. Patra, S. and Gouthama, Mondal K., Densification behavior of mechanically milled Cu–8 at % Cr alloy and its mechanical and electrical properties, Prog. Nat. Sci.: Mater. Int., 2014, vol. 24, no. 6, pp. 608‒622.

    CAS  Article  Google Scholar 

  8. Rogachev, A.S., Kuskov, K.V., Moskovskikh, D.O., Usenko, A.A., Orlov, A.O., Shkodich, N.F., Alymov, M.I., and Mukasyan, A.S., Effect of mechanical activation on thermal and electrical conductivity of sintered Cu, Cr, and Cu/Cr composite powders, Dokl. Phys., 2016, vol. 61, no. 6, pp. 257–260.

    CAS  Article  Google Scholar 

  9. Shkodich, N.F., Rogachev, A.S., Mukasyan, A.S., Moskovskikh, D.O., Kuskov, K.V., Schukin, A.S., and Khomenko, N.Yu., Preparation of copper-molybdenum nanocrystalline pseudo-alloys using a combination of mechanical activation and Spark Plasma Sintering, Russ.J. Phys. Chem., B, 2017, vol. 11, no. 1, pp. 173–179.

    CAS  Google Scholar 

  10. Rogachev, A.S., Kuskov, K.V., Shkodich, N.F., Moskovskikh, D.O., Orlov, A.O., Usenko, A.A., Karpov, A.V., Kovalev, I.D., and Mukasyan, A.S., Influence of high-energy ball milling on electrical resistance of Cu and Cu/Cr nanocomposite materials produced by spark plasma sintering, J. Alloys Compd., 2016, vol. 688, pp. 468–474.

    CAS  Article  Google Scholar 

  11. Lahiri, I. and Bhargava, S., Compaction and sintering response of mechanically alloyed Cu–Cr powder, Powder Technol., 2009, vol. 189, no. 3, pp. 433–438.

    CAS  Article  Google Scholar 

  12. Fang, Q., Kang, Z., Gan, Y., and Long, Y., Microstructures and mechanical properties of spark plasma sintered Cu–Cr composites prepared by mechanical milling and alloying, Mater. Des., 2015, vol. 88, pp. 8–15.

    CAS  Article  Google Scholar 

  13. Kumar, A., Jayasankar, K., Debata, M., and Mandal, A., Mechanical alloying and properties of immiscible Cu–20 wt % Mo alloy, J. Alloys Compd., 2015. vol. 647, pp. 1040–1047.

    CAS  Article  Google Scholar 

  14. Wang, D., Dong, X., Zhou, P., Sun, A., and Duan, B., The sintering behavior of ultra-fine Mo–Cu composite powders and the sintering properties of the composite compacts, Int. J. Refract. Met. Hard Mater., 2014, vol. 42, pp. 240–245.

    CAS  Article  Google Scholar 

  15. Zhanlei, W., Huiping, W., Zhonghua, H., Hongyu, X., and Yifan, L., Dynamic consolidation of W–Cu nano-alloy and its performance as liner materials, Rare Met. Mater. Eng., 2014, vol. 43, pp. 1051–1055.

    Article  Google Scholar 

  16. Fang, Q. and Kang, Z., An investigation on morphology and structure of Cu–Cr alloy powders prepared by mechanical milling and alloying, Powder Technol., 2015, vol. 270, part A, pp. 104–111.

  17. Yang, X., Zou, J., Xiao, P., and Wang, X., Effects of Zr addition on properties and vacuum arc characteristics of Cu–W alloy, Vacuum, 2014, vol. 106, pp. 16–20.

    CAS  Article  Google Scholar 

  18. Wei, X., Yu, D., Sun, Z., Yang, Z., Song, X., and Ding, B., Effect of Ni addition on the dielectric strength and liquid phase separation of Cu–Cr alloys during the vacuum breakdown, Vacuum, 2014, vol. 109, pp. 162–165.

    CAS  Article  Google Scholar 

  19. Weichan, C., Shuhua, L., Xiao, Z., Xianhui, W., and Xiaohong, Y., Effect of Mo addition on microstructure and vacuum arc characteristics of CuCr50 alloy, Vacuum, 2011, vol. 85, pp. 943‒948.

    Article  Google Scholar 

  20. Sheibani, S., Heshmati-Manesh, S., and Ataie, A., Influence of Al2O3 nanoparticles on solubility extension of Cr in Cu by mechanical alloying, Acta Mater., 2010, vol. 58, pp. 6828‒6834.

    CAS  Article  Google Scholar 

  21. Sauvage, X., Jessner, P., Vurpillot, F., and Rippan, R., Nanostructure and properties of a Cu–Cr composite processed by severe plastic deformation, Scr. Mater., 2008, vol. 58, pp. 1125–1128.

    CAS  Article  Google Scholar 

  22. Kumar, A., Kumar, Pradhan S., Jayasankar, K., Debata, M., Kumar, Sharma R., and Mandal, A., Structural investigations of nanocrystalline Cu–Cr–Mo alloy prepared by high-energy ball milling, J. Electron. Mater., 2017, vol. 46, no. 2, pp. 1339–1347.

    CAS  Article  Google Scholar 

  23. Mula, S., Panigrahi, J., Kang, P.C., and Koch, C.C., Effect of microwave sintering over vacuum and conventional sintering of Cu based nanocomposites, J. Alloys Compd., 2014, vol. 588, pp. 710–715.

    CAS  Article  Google Scholar 

  24. Sheibani, S., Heshmati-Manesh, S., Ataie, A., Caballero, A., and Criado, J.M., Spinodal decomposition and precipitation in Cu–Cr nanocomposite, J. Alloys Compd., 2014, vol. 587, pp. 670–676.

    CAS  Article  Google Scholar 

  25. Paris, S., Gaffet, E., Bernard, F., and Munir, Z.A., Spark plasma synthesis from mechanically activated powders: A versatile route for producing dense nanostructured iron aluminides, Scr. Mater., 2004, vol. 50, pp. 691–696.

    CAS  Article  Google Scholar 

  26. Xian-liang Zhou, Ying-hu Dong, Xiao-zhen Hua, Rafi-ud-din, and Zhi-guo Ye, Effect of Fe on the sintering and thermal properties of Mo–Cu composites, Mater. Des., 2010, vol. 31, pp. 1603–1606.

    CAS  Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18-38-00843 mol_a.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. F. Shkodich, Yu. S. Vergunova, K. V. Kuskov, G. V. Trusov or I. D. Kovalev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Korovin

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shkodich, N.F., Vergunova, Y.S., Kuskov, K.V. et al. Nanostructured Gradient Material Based on the Cu–Cr–W Pseudoalloy Fabricated by High-Energy Ball Milling and Spark Plasma Sintering. Russ. J. Non-ferrous Metals 61, 309–318 (2020). https://doi.org/10.3103/S1067821220030153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821220030153

Keywords:

  • pseudoalloy
  • high-energy ball milling
  • spark plasma sintering
  • nanostructure
  • gradient material
  • electric contact