Myshkin, N.K., Konchits, V.V., and Braunovich, M., Elektricheskie kontakty (Electrical Contacts), Dolgoprudnyi: Intellekt, 2008.
Slade, P., The vacuum interrupter contact, IEEE Trans. Compon., Hybrids,Manuf. Technol., 1984, vol. 7, no. 1, pp. 25–32.
Google Scholar
Avramov, Yu.S. and Shlyapin, A.D., Novye kompozitsionnye materialy na osnove nesmeshivayushchikhsya komponentov: Poluchenie, struktura, svoistva (New Composite Materials Based on Immiscible Components: Preparation, Structure, Properties), Moscow: Moscow State Industrial Univ., 1999.
Yang, Z., Zhang, Q., Wang, Q., Zhang, Ch., and Ding, B., Vacuum arc characteristics on nanocrystalline Cu–Cr alloys, Vacuum, 2006, vol. 81, pp. 545–549.
CAS
Article
Google Scholar
Wei, X., Yu, D., Sun, Z., Yang, Z., Song, X., and Ding, B., Arc characteristics and microstructure evolution of W–Cu contacts during the vacuum breakdown, Vacuum, 2014, vol. 107, pp. 83–89.
CAS
Article
Google Scholar
Shkodich, N.F., Rogachev, A.S., Vadchenko, S.G., Moskovskikh, D.O., Sachkova, N.V., Rouvimov, S., and Mukasyan, A.S., Bulk Cu–Cr nanocomposites by high-energy ball milling and spark plasma sintering, J. Alloys Compd., 2014, vol. 617, pp. 39–46.
CAS
Article
Google Scholar
Patra, S. and Gouthama, Mondal K., Densification behavior of mechanically milled Cu–8 at % Cr alloy and its mechanical and electrical properties, Prog. Nat. Sci.: Mater. Int., 2014, vol. 24, no. 6, pp. 608‒622.
CAS
Article
Google Scholar
Rogachev, A.S., Kuskov, K.V., Moskovskikh, D.O., Usenko, A.A., Orlov, A.O., Shkodich, N.F., Alymov, M.I., and Mukasyan, A.S., Effect of mechanical activation on thermal and electrical conductivity of sintered Cu, Cr, and Cu/Cr composite powders, Dokl. Phys., 2016, vol. 61, no. 6, pp. 257–260.
CAS
Article
Google Scholar
Shkodich, N.F., Rogachev, A.S., Mukasyan, A.S., Moskovskikh, D.O., Kuskov, K.V., Schukin, A.S., and Khomenko, N.Yu., Preparation of copper-molybdenum nanocrystalline pseudo-alloys using a combination of mechanical activation and Spark Plasma Sintering, Russ.J. Phys. Chem., B, 2017, vol. 11, no. 1, pp. 173–179.
CAS
Google Scholar
Rogachev, A.S., Kuskov, K.V., Shkodich, N.F., Moskovskikh, D.O., Orlov, A.O., Usenko, A.A., Karpov, A.V., Kovalev, I.D., and Mukasyan, A.S., Influence of high-energy ball milling on electrical resistance of Cu and Cu/Cr nanocomposite materials produced by spark plasma sintering, J. Alloys Compd., 2016, vol. 688, pp. 468–474.
CAS
Article
Google Scholar
Lahiri, I. and Bhargava, S., Compaction and sintering response of mechanically alloyed Cu–Cr powder, Powder Technol., 2009, vol. 189, no. 3, pp. 433–438.
CAS
Article
Google Scholar
Fang, Q., Kang, Z., Gan, Y., and Long, Y., Microstructures and mechanical properties of spark plasma sintered Cu–Cr composites prepared by mechanical milling and alloying, Mater. Des., 2015, vol. 88, pp. 8–15.
CAS
Article
Google Scholar
Kumar, A., Jayasankar, K., Debata, M., and Mandal, A., Mechanical alloying and properties of immiscible Cu–20 wt % Mo alloy, J. Alloys Compd., 2015. vol. 647, pp. 1040–1047.
CAS
Article
Google Scholar
Wang, D., Dong, X., Zhou, P., Sun, A., and Duan, B., The sintering behavior of ultra-fine Mo–Cu composite powders and the sintering properties of the composite compacts, Int. J. Refract. Met. Hard Mater., 2014, vol. 42, pp. 240–245.
CAS
Article
Google Scholar
Zhanlei, W., Huiping, W., Zhonghua, H., Hongyu, X., and Yifan, L., Dynamic consolidation of W–Cu nano-alloy and its performance as liner materials, Rare Met. Mater. Eng., 2014, vol. 43, pp. 1051–1055.
Article
Google Scholar
Fang, Q. and Kang, Z., An investigation on morphology and structure of Cu–Cr alloy powders prepared by mechanical milling and alloying, Powder Technol., 2015, vol. 270, part A, pp. 104–111.
Yang, X., Zou, J., Xiao, P., and Wang, X., Effects of Zr addition on properties and vacuum arc characteristics of Cu–W alloy, Vacuum, 2014, vol. 106, pp. 16–20.
CAS
Article
Google Scholar
Wei, X., Yu, D., Sun, Z., Yang, Z., Song, X., and Ding, B., Effect of Ni addition on the dielectric strength and liquid phase separation of Cu–Cr alloys during the vacuum breakdown, Vacuum, 2014, vol. 109, pp. 162–165.
CAS
Article
Google Scholar
Weichan, C., Shuhua, L., Xiao, Z., Xianhui, W., and Xiaohong, Y., Effect of Mo addition on microstructure and vacuum arc characteristics of CuCr50 alloy, Vacuum, 2011, vol. 85, pp. 943‒948.
Article
Google Scholar
Sheibani, S., Heshmati-Manesh, S., and Ataie, A., Influence of Al2O3 nanoparticles on solubility extension of Cr in Cu by mechanical alloying, Acta Mater., 2010, vol. 58, pp. 6828‒6834.
CAS
Article
Google Scholar
Sauvage, X., Jessner, P., Vurpillot, F., and Rippan, R., Nanostructure and properties of a Cu–Cr composite processed by severe plastic deformation, Scr. Mater., 2008, vol. 58, pp. 1125–1128.
CAS
Article
Google Scholar
Kumar, A., Kumar, Pradhan S., Jayasankar, K., Debata, M., Kumar, Sharma R., and Mandal, A., Structural investigations of nanocrystalline Cu–Cr–Mo alloy prepared by high-energy ball milling, J. Electron. Mater., 2017, vol. 46, no. 2, pp. 1339–1347.
CAS
Article
Google Scholar
Mula, S., Panigrahi, J., Kang, P.C., and Koch, C.C., Effect of microwave sintering over vacuum and conventional sintering of Cu based nanocomposites, J. Alloys Compd., 2014, vol. 588, pp. 710–715.
CAS
Article
Google Scholar
Sheibani, S., Heshmati-Manesh, S., Ataie, A., Caballero, A., and Criado, J.M., Spinodal decomposition and precipitation in Cu–Cr nanocomposite, J. Alloys Compd., 2014, vol. 587, pp. 670–676.
CAS
Article
Google Scholar
Paris, S., Gaffet, E., Bernard, F., and Munir, Z.A., Spark plasma synthesis from mechanically activated powders: A versatile route for producing dense nanostructured iron aluminides, Scr. Mater., 2004, vol. 50, pp. 691–696.
CAS
Article
Google Scholar
Xian-liang Zhou, Ying-hu Dong, Xiao-zhen Hua, Rafi-ud-din, and Zhi-guo Ye, Effect of Fe on the sintering and thermal properties of Mo–Cu composites, Mater. Des., 2010, vol. 31, pp. 1603–1606.
CAS
Article
Google Scholar