Skip to main content
Log in

Peculiarities of the Synthesis of High-Temperature TaSi2–SiC Ceramics Reinforced in situ by Discrete Silicon Carbide Nanofibers

  • PHYSICAL METALLURGY AND HEAT TREATMENT
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The possibility of increasing the mechanical properties of the ceramic material of the TaSi2–SiC system by reinforcing it with silicon carbide nanofibers forming in situ in the combustion wave of the SHS system is investigated. To fabricate nanofibers, as well as to increase the exothermicity of reaction mixtures, an energetic polytetrafluoroethylene (PTFE) additive C2F4 was applied. The 70%TaSi2 + 30%SiC ceramic, in which silicon carbide is situated in two types of morphology—in the form of rounded grains and discrete nanofibers—was fabricated with the help of self-propagating high-temperature synthesis when using the mechanical activation of initial reaction mixtures. Reinforced ceramic samples sintered using hot pressing have a relative density up to 98%, hardness of 19.0–19.2 GPa, and crack resistance of 7.5–7.8 MPa m1/2 (which noticeably exceeds the crack resistance of the ceramics of the close composition formed without the PTFE additive).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Properties and Applications of Silicon Carbide, Rosario Gerhardt, Ed., IntechOpen, 2011. https://doi.org/10.5772/615.

  2. Moskovskikh, D.O., Lin, Y-C., Rogachev, A.S., McGinn, P.J., and Mukasyan, A.S., Spark plasma sintering of SiC powders produced by different combustion synthesis routes, J. Eur. Ceram. Soc., 2015, vol. 35, no. 2, pp. 477–486.

    Article  Google Scholar 

  3. Vorotilo, S., Potanin, A.Y., Iatsyuk, I.V., and Levashov, E.A., SHS of silicon-based ceramics for the high-temperature applications, Adv. Eng. Mater., 2018, vol. 20, no. 8, p. 1800200.

    Article  Google Scholar 

  4. Chen, P., Jing, S., Chu, Y., and Rao, P., Improved fracture toughness of CNTs/SiC composites by HF treatment, J. Alloys and Compd., 2018, vol. 730, pp. 42–46.

    Article  Google Scholar 

  5. Li, Q., Zhang, Y., Gong, H., Sun, H., Li, W., Ma, L., and Zhang, Y., Enhanced fracture toughness of pressureless-sintered SiC ceramics by addition of graphene, J. Mater. Sci. Technol., 2016, vol. 32, no. 7, pp. 633–638.

    Article  Google Scholar 

  6. Vorotilo, S., Levashov, E.A., Kurbatkina, V.V., Kovalev, D.Yu., and Kochetov, N.A., Self-propagating high-temperature synthesis of nanocomposite ceramics TaSi2–SiC with hierarchical structure and superior properties, J. Eur. Ceram. Soc., 2018, vol. 38, no. 2, pp. 433–443.

    Article  Google Scholar 

  7. Du, S.X., Zhang, K., Wen, M., Ren, P., Meng, Q.N., Zhang, Y.D., and Zheng, W.T., Crystallization of SiC and its effects on microstructure, hardness and toughness in TaC/SiC multilayer films, Ceram. Int., 2018, vol. 44, pp. 613–621.

    Article  Google Scholar 

  8. Luo, H., Chen, W., Zhou, W., Long, L., Deng, L., Xiao, P., and Li, Y., Carbon fiber/Si3N4 composites with SiC nanofiber interphase for enhanced microwave absorption properties, Ceram. Int., 2017, vol. 43, no. 15, pp. 12328–12332.

    Article  Google Scholar 

  9. Ayral, R.M., Rouessac, F., and Massoni, N., Combustion synthesis of silicon carbide assisted by a magnesium plus polytetrafluoroethylene mixture, Mater. Res. Bull., 2009, vol. 44, no. 11, pp. 2134–2138.

    Article  Google Scholar 

  10. Nersisyan, G.A., Nikogosov, V.N., Kharatyan, S.L., and Merzhanov, A.G., Chemical transformation mechanism and combustion regimes in the system silicon-carbonfluoroplast, Combust. Explos. Shock Waves, 1991, vol. 27, no. 6, pp. 720–724.

    Article  Google Scholar 

  11. Anstis, G.R., Chantikul, P., Lawn, B.R., and Marshal, D.B., A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements, J. Amer. Ceram. Soc., 1981, vol. 64, pp. 533–538.

    Article  Google Scholar 

  12. Liu, G., Chen, K., and Li, J., Combustion synthesis: An effective tool for preparing inorganic materials, Scripta Mater., 2018, vol. 157, pp. 167–173.

    Article  Google Scholar 

  13. Yang, Z., Li, Z., Ning, T., Zhang, M., Yan, Y., Zhang, D., and Cao, G., Microwave dielectric properties of B and N co-doped nanopowders prepared by combustion synthesis, J. Alloys Compd., 2019, vol. 777, pp. 1039–1043. https://doi.org/10.1016/j.jallcom.2018.11.067.

    Article  Google Scholar 

  14. Dąbrowska, A., Bzymek, A., and Huczko, A., In situ diagnostics of the SiC nanostructures growth process, J. Crystal Growth, 2014, vol. 401, pp. 376–380.

    Article  Google Scholar 

  15. Chu, A., Zhang, D., Guo, S., and Qu, X., Polyacrylamide-assisted combustioncarbothermal synthesis of well-distributed SiC nanowires, Ceram. Int., 2015, vol. 41, no. 10, Pt. B, pp. 14585–14591.

  16. Zheng, C.-S., Yan, Q.-Z., and Xia, M., Combustion synthesis of SiC/Si3N4–NW composite powders: The influence of catalysts and gases, Ceram. Int., 2012, vol. 38, no. 6, pp. 4549–4554.

    Article  Google Scholar 

  17. Potanin, A.Yu., Zvyagintseva, N.V., Pogozhev, Yu.S., Levashov, E.A., Rupasov, S.I., Shtansky, D.V., Kochetov, N.A., and Kovalev, D.Yu., Silicon carbide ceramics SHSproduced from mechanoactivated Si–C–B mixtures, Int. J. SHS, 2015, vol. 24, no. 3, pp. 119–127.

    Google Scholar 

  18. Iatsyuk, I.V., Potanin, A.Yu, Rupasov, S.I., and Levashov, E.A., Kinetics and high-temperature oxidation mechanism of ceramic materials in the ZrB2–SiC–MoSi2 system, Russ. J. Non-Ferrous Met., 2018, vol. 59, no. 1, pp. 76–81.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Scientific Foundation, project no. 14-19-00273-P.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Vorotilo, E. D. Polosova or E. A. Levashov.

Additional information

Translated by N. Korovin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorotilo, S., Polosova, E.D. & Levashov, E.A. Peculiarities of the Synthesis of High-Temperature TaSi2–SiC Ceramics Reinforced in situ by Discrete Silicon Carbide Nanofibers. Russ. J. Non-ferrous Metals 60, 169–172 (2019). https://doi.org/10.3103/S1067821219020159

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821219020159

Keywords:

Navigation