Skip to main content
Log in

Ammoniacal Dissolution of Polymetallic Alloy Produced from Waste Electroscrap

  • METALLURGY OF NONFERROUS METALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The paper reports spontaneous and electrochemical dissolution of polymetallic alloy obtained from electrowaste. Effectiveness of chloride, carbonate and sulfate ammoniacal solutions was compared. Leaching process was conducted with and without addition of cupric ions. It resulted in the transfer of primarily copper (over 90%) and negligible amounts of zinc, lead, nickel and iron to the electrolyte, but the rate of the spontaneous dissolution was low. The best condition of the alloy leaching was obtained in the presence of Cu2+ ions in ammonium-carbonate solution. Anodic dissolution of the alloy led to unfavorable distribution of metals among the slime, electrolyte and cathodic deposit, but the highest dissolution rate in the chloride bath was found. Copper can be selectively recovered on the cathode from all electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. http://www.nies.go.jp/lifespan/.

  2. Crowe, M., Elser, A., Gopfert, B., Mertins, L., Meyer, T., Schmid, J., Spillner, A., and Strobel, R., Waste from Electric and Electronic Equipment (WEEE)—Quantities, Dangerous Substances and Treatment Methods, Copenhagen: EEA, 2002.

    Google Scholar 

  3. Savage, M., Implementation of Waste Electric and Electronic Equipment Directive in EU 25, Inst. Prosp. Technol. Stud., 2006.

  4. Zeng, X., Gong, R., Chen, W-Q., and Li, J., Uncovering the Recycling Potential of “New” WEEE in China, Environ. Sci. Technol., 2016, vol. 50, no. 3, pp. 1347–1358.

    Article  Google Scholar 

  5. Huisman, J., Botezatu, I., Herreras, L., Liddane, M., Hintsa, J., Luda di Cortemiglia, V., Leroy, P., Vermeersch, E., Mohanty, S., van den Brink, S., Ghenciu, B., Dimitrova, D., Nash, E., Shryane, T., Wieting, M., Kehoe, J., Baldé, C.P., Magalini, F., Zanasi, A.,Ruini, F., and Bonzio, A., Countering WEEE Illegal Trade (CWIT) Summary Report, Market Assessment, Legal Analysis, Crime Analysis and Recommendations Roadmap, Lyon, 2015.

    Google Scholar 

  6. Raport o Funkcjonowaniu Systemu Gospodarki Zużytym Sprzętem Elektrycznym i Elektronicznym w 2014 Roku, Warszawa: GIOŚ, 2015 (in Polish).

  7. Fundeko, Korbel and Krok-Baściuk, Sp.J., Standardy Przetwarzania Poszczególnych Rodzajów Zużytego Sprzętu Oraz Wymagania dla Zakładów Przetwarzania Zużytego Sprzętu, Warszawa, 2015 (in Polish).

  8. Nakamura T., Halada K., Urban Mining Systems, Springer Briefs Appl. Sci. Technol., 2015.

  9. Cui, J. and Zhang, I., Metallurgical recovery of metals from electronic waste: A review, J. Hazard. Mater., 2008, vol. 158, pp. 228–256.

    Article  Google Scholar 

  10. Khaliq, A., Rhamdhani, M.A., Brookes, G., and Masood S., Metal extraction processes for electronic waste and existing industrial routes: a review and Australian perspective, Resources, 2014, vol. 3, pp. 152–179.

    Article  Google Scholar 

  11. Willner, J. and Fornalczyk, A., Extraction of metals from electronic waste by bacterial leaching, Environ. Protect. Eng., 2013, vol. 39, no. 1, pp. 197–208.

    Google Scholar 

  12. Pant, D., Joshi, D., Upreti, M.K., and Kotnala, R.K., Chemical and biological extraction of metals present in E-waste: a hybrid technology, Waste. Manage., 2012, vol. 32, pp. 979–990.

    Article  Google Scholar 

  13. Oishi, T., Koyama, K., Alam, S., Tanaka, M., and Lee, J.-C., Recovery of high purity cathode from printed circuit boards using ammoniacal sulfate or chloride solutions, Hydrometallurgy, 2007, vol. 89, pp. 82–88.

    Article  Google Scholar 

  14. Tripathi, A., Kumar, M., Sau, D.C., Agrawal, A., Chakravarty, S., and Mankhand, T.R., Leaching of gold from waste mobile phone printed circuit boards with ammonium thiosulphate, Int. J. Metall. Eng., 2012, vol. 1, no. 2, pp. 17–21.

    Google Scholar 

  15. Lim, Y., Kwon, O., Lee, J., and Yoo, K., The ammonia leaching of alloy produced from waste printed circuit boards smelting process, Geosyst. Eng., 2013, vol. 16, no. 3, pp. 216–224.

    Google Scholar 

  16. Rudnik, E. and Bayaraa, E., Electrochemical dissolution of smelted low-grade electronic scraps in acid sulfate-chloride solutions, Hydrometallurgy, 2016, vol. 159, pp. 110–119.

    Article  Google Scholar 

  17. Rudnik, E., Kołczyk, K., and Kutyła, D., Comparative studies on the hydrometallurgical treatment of smelted low-grade electronic scraps for selective copper recovery, Trans. Nonferr. Met. Soc. China, 2015, vol. 25, no. 8, pp. 2763–2771.

    Article  Google Scholar 

  18. Rudnik, E. and Dashbold, N., Studies on copper recovery from smelted low-grade e-scrap using hydrometallurgical methods, Min. Metall. Proc., 2017, vol. 34, no. 1, pp. 20–29.

    Google Scholar 

  19. Chou, C. and Chen, S., Phase equilibria of the Sn–Zn–Cu ternary system, Acta Mater., 2006, vol. 54, pp. 2393–2400.

    Article  Google Scholar 

  20. Chen, S.-W., Wang, C.-H., Lin, S.-K., and Chiu, C.-N., Phase diagrams of Pb-free solders and their related material systems, J. Mater. Sci.: Mater. Electron., 2007, vol. 18, pp. 19–37.

    Google Scholar 

  21. Groot, D.R. and van der Linde, J.A.N., The processing of e-waste. Part 1: the preparation and characterization of a metallic alloy derived from the smelting of printed circuit boards, J. South. Afric. Inst. Min. Metall., 2009, vol. 109, pp. 697–700.

    Google Scholar 

  22. Cayumil, R., Khanna, R., Ikram-Ul-Haq, M., and Rajarao, R., Hill, A., and Sahajwalla, V., Generation of copper rich metallic phases from waste printed circuit boards, Waste Manage., 2014, vol. 34, no. 10, pp. 1783–1792.

    Article  Google Scholar 

  23. Massalski, T.B., Binary alloy phase diagrams, Metals Park, OH: Amer. Soc. Met., 1990.

    Google Scholar 

  24. The IUPAC Stability Constants Database, Academic Software, UK.

  25. Rajasekharan Nair, K.V. and Namboodhiri, T.K.G., Influence of sulphate and chloride ions on corrosion of 63–37 brass in aqueous ammonia containing copper, Br. Corros. J., 1988, vol. 32, no. 4, pp. 245–249.

    Article  Google Scholar 

  26. Sędzimir, J. and Bujańska, M., The corrosion of copper in copper(II)-ammonium sulphate solutions: the influences of ammonia concentration, of temperature and of the substitution of sulphates by carbonates, Corros. Sci., 1980, vol. 20, nos. 8–9, pp. 1029–1040.

Download references

ACKNOWLEDGMENTS

This research work was supported by The National Centre for Research and Development (Poland) under grant no. INNOTECH-2/IN2/18/181960/NCBR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Rudnik.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ewa Rudnik, Dobosz, I. & Włoch, G. Ammoniacal Dissolution of Polymetallic Alloy Produced from Waste Electroscrap. Russ. J. Non-ferrous Metals 59, 476–485 (2018). https://doi.org/10.3103/S1067821218050152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821218050152

Keywords:

Navigation