Skip to main content
Log in

Research on the Electrochemical Behavior of Si(IV) on the Tungsten Electrode in CaCl2–CaF2–CaO Molten Melt

  • METALLURGY OF NONFERROUS METALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

At 1023 K, the electrochemical behavior of Si(IV) on the tungsten electrode in CaCl2–CaF2–CaO–SiO2 molten salt was studied by cyclic voltammetry, square-wave voltammetry and open-circuit chronopotentiometry. The reduction potential of Si(IV) started at –0.68 V, and the intermediate product CaC2 was observed at –1.78 V. The reduction of Si(IV) on the tungsten electrode was a one-step four-electron transition, which was a diffusion-controlled mass transfer process. The diffusion coefficient for the reduction process of Si(IV) ions was estimated to be 3.22 × 10–5 cm2 s–1 at 1023 K. With the temperature interval from 993 to 1183 K, the diffusion activation energy was calculated to be 4.425 kJ mol–1. Moreover, the deposition of Si(IV) occurs when the applied potential is less than –0.6 V (vs. Pt wire). The present electrochemical study on Si(IV) in the molten salt will be a theoretical reference for future silicon electrorefining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Razykov, T.M., Ferekides, C.S., Morel, D., Stefanakos, E., Ullal, H.S., and Upadhyaya, H.M., Solar photovoltaic electricity: Current status and future prospects, Sol. Energy, 2011, vol. 85, no. 8, pp. 1580–1608.

    Article  Google Scholar 

  2. Nohira, T., Yasuda, K., and Ito, Y., Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon, Nat. Mater., 2003, vol. 2, no. 6, pp. 397–401.

    Article  Google Scholar 

  3. Woditsch, P., and Koch, W., Solar grade silicon feedstock supply for PV industry, Sol. Energy Mat. Sol. C., 2002, vol. 72, nos. 1–4, pp. 11–26.

  4. Müller, A., Ghosh, M., Sonnenschein, R., and Woditsch, P., Silicon for photovoltaic applications, Mat. Sci. Eng. B, 2006, vol. 134, nos. 2–3, pp. 257–262.

  5. Castrillejo, Y., Fernández, P., Medina, J., Hernández, P., and Barrado, E., Electrochemical extraction of samarium from molten chlorides in pyrochemical processes, Electrochim. Acta, 2011, vol. 56, no. 24, pp. 8638–8644.

    Article  Google Scholar 

  6. Cordoba, G., and Caravaca, C., An electrochemical study of samarium ions in the molten eutectic LiCl+KCl, J. Electroanal. Chem, 2004, vol. 572, no. 1, pp. 145–151.

    Article  Google Scholar 

  7. Khalimullina, Y.R., Zaikov, Y.P., Arkhipov, P.A., Ashikhin, V.V., Skopov, G.V., Kholkina, A.S., and Molchanova, N.G., Thermodynamic characteristics of the Pb–Bi alloys in the KCl–PbCl2 melt, Russ. J. Non-Ferrous. Met., 2011, vol. 52, no. 3, pp. 197–204.

    Article  Google Scholar 

  8. Malyshev, V.V., and Gab, A.I., Theoretical fundamentals and practical implementation of electrometallurgical processes of producing disperse zirconium diboride powders and coatings, Russ. J. Non-Ferrous. Met., 2009, vol. 50, no. 5, pp. 485–491.

    Article  Google Scholar 

  9. Liu, K., Liu, Y. L., Pang, J. W., Yuan, L. Y., Wang, L., Chai, Z. F., and Shi, W. Q., Condition dependence of Zr electrochemical reactions and morphological evolution of Zr deposits in molten salt. Sci. China Chem., 2017, vol. 60, no.2, pp. 264–274.

    Article  Google Scholar 

  10. Malyshev, V.V., Electrodeposition of chromium from ionic melts, Russ. J. Non-Ferrous. Met., 2011, vol. 52, no. 6, pp. 473–480.

    Article  Google Scholar 

  11. Yang, X., Ji, L., Zou, X., Lim, T., Zhao, J., Yu, E. T., and Bard, A.J., Toward cost-effective manufacturing of silicon solar cells: electrodeposition of high-quality Si films in a CaCl2-based molten salt, Angew. Chem. Int. Edit., 2017, vol. 129, no. 47, pp. 15274–15278.

    Article  Google Scholar 

  12. Jin, X., Gao, P., Wang, D., Hu, X., and Chen, G.Z., Electrochemical preparation of silicon and its alloys from solid oxides in molten calcium chloride, Angew. Chem. Int. Edit., 2004, vol. 43, no. 6, pp. 733–736.

    Article  Google Scholar 

  13. Hu, Y., Wang, X., Xiao, J., Hou, J.G., Jiao, S.Q., and Zhu, H.M., Electrochemical behavior of silicon(IV) ion in BaF2–CaF2–SiO2 melts at 1573 K, J. Electrochem. Soc., 2013, vol. 160, no. 3, pp. D81–D84.

    Article  Google Scholar 

  14. Haarberg, G.M., Famiyeh, L., Martinez, A.M., and Osen, K.S., Electrodeposition of silicon from fluoride melts, Electrochim. Acta, 2013, vol. 100, pp. 226–228.

    Article  Google Scholar 

  15. Bieber, A.L., Massot, L., Gibilaro, M., Cassayre, L., Taxil, P., and Chamelot, P., Silicon electrodeposition in molten fluorides, Electrochim. Acta, 2012, vol. 62, pp. 282–289.

    Article  Google Scholar 

  16. Zhuk, S.I., Isakov, A.V., Apisarov, A.P., Grishenkova, O.V., Isaev, V.A., Vovkotrub, E.G., and Zaykov, Y.P., Electrodeposition of continuous silicon coatings from the KF–KCl–K2SiF6 melts, J. Electrochem. Soc., 2017, vol. 164, no. 8, pp. H5135–H5138.

    Article  Google Scholar 

  17. Zaykov, Y.P., Zhuk, S.I., Isakov, A.V., Grishenkova, O.V., and Isaev, V.A., Electrochemical nucleation and growth of silicon in the KF–KCl–K2SiF6 melt, J. Solid State Electron., 2015, vol. 19, no. 5, pp. 1341–1345.

    Article  Google Scholar 

  18. Galyus, Z., Theoretical Basics of Electrochemical Analysis. Moscow: Mir, 1974.

  19. Rodríguez-Aragón, L.J., and López-Fidalgo, J., Optimal designs for the Arrhenius equation, Chemometr. Intel. Lab., 2005, vol. 77, nos. 1–2, pp. 131–138P.

  20. Rodríguez-Díaz, J.M., and Santos-Martín, M.T., Study of the best designs for modifications of the Arrhenius equation, Chemometr. Intel. Lab., 2009, vol. 95, no. 2, pp. 199–208P.

    Article  Google Scholar 

  21. Xu, L., Xiao, Y., Xu, Q., van Sandwijk, A., Li, J.D., Zhao, Z., and Yang, Y.X., Electrochemical behavior of zirconium in molten LiF–KF–ZrF4 at 600°C, RSC Adv., 2016, vol. 6, no. 87, pp. 84472–84479.

    Google Scholar 

  22. Liu, Y.L., Yuan, L.Y., Ye, G.A., Zhang, M.L., He, H., Tang, H.B., Chai, Z.F., and Shi, W.Q., Electrochemical extraction of samarium from LiCl–KCl melt by forming Sm–Zn alloys, Electrochim. Acta, 2014, vol. 120, pp. 369–378.

    Article  Google Scholar 

  23. Bard, A.J., and Faulkner, L.R., Electrochemical methods: Fundamentals and Applications, New York: Wiley, 2001.

    Google Scholar 

  24. Børresen, B., Haarberg, G.M., and Tunold, R., Electrodeposition of magnesium from halide melts–charge transfer and diffusion kinetics, Electrochim Acta, 1997, vol. 42, no. 10, pp. 1613–1622.

    Article  Google Scholar 

  25. Scharifker, B., Hills, G. Theoretical and experimental studies of multiple nucleation, Electrochim Acta, 1983, vol. 28, no. 7, pp. 879–889.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was financially supported by the National Natural Science Foundation of China (51774180), Liaoning Province Natural Science Foundation of China (201602394), Liaoning BaiQianWan Talents Program (2017104) and the Skeleton Talent Project of University of Science and Technology Liaoning (2015RC05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jidong Li.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jidong Li, Ren, H., Guo, F. et al. Research on the Electrochemical Behavior of Si(IV) on the Tungsten Electrode in CaCl2–CaF2–CaO Molten Melt. Russ. J. Non-ferrous Metals 59, 486–492 (2018). https://doi.org/10.3103/S1067821218050085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821218050085

Keywords:

Navigation