Skip to main content
Log in

Influence of Annealing at Various Temperatures on the Structure and Hardness of Amorphous Ribbons of the Al85Y8Ni5Co2 Alloy

  • PHYSICAL METALLURGY AND HEAT TREATMENT
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Aluminum-based metal glasses are a promising new family of materials. However, the influence of thermal treatment on the structure and properties of amorphous alloys of the Al–Y–Ni–Co system is still not studied in detail. In this work, amorphous ribbons of the Al85Y8Ni5Co2 alloy are formed by quenching on a rotating copper disc. The influence of annealing in vacuum at temperatures from 100 to 500°C for 30 min on the structure and hardness of these ribbons is investigated. To investigate the variations occurring in their structure after thermal treatment, scanning electron microscopy, X-ray structural analysis, and differential scanning calorimetry are used. To investigate the influence of annealing on mechanical properties of ribbons, the Vickers microhardness is measured. Conclusions on the variation in hardness depending on the structure of ribbons of the Al85Y8Ni5Co2 alloy are made based on these results. It is established that their microhardness increases with an increase in temperature, reaching the maximal value of 575 ± 7 HV after annealing at 350°C, and then decreases with a further increase in the thermal-treatment temperature. It is shown that ribbons of the Al85Y8Ni5Co2 alloy remain totally amorphous after annealing at t ≤ 250°C for 30 min, and crystalline phases are absent in the structure. An abrupt increase in hardness after annealing at 350°C is associated with the formation of nanocrystals of the aluminum solid solution 10–30 nm in size in an amorphous matrix surrounded by the residual amorphous matrix, while its further decrease is caused by an increase in the size of these crystals and the appearance of Al3Yand Al19Ni5Y3 intermetallic compounds in the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Klement, W., Willens, R.H., and Duwez, P., Non-crystalline structures in solidified gold–silicon alloys, Nature, 1960, vol. 187, pp. 869–870.

    Article  Google Scholar 

  2. Louzguine, D.V. and Inoue, A., Production and nanocrystallization of metallic glasses), Materialovedenie, 2008, vol. 11, pp. 41–50.

    Google Scholar 

  3. Suryanarayana, C. and Inoue, A., Bulk Metallic Glasses, Boca Raton: CRC, 2010.

    Book  Google Scholar 

  4. Louzguine, D.V. and Pol’kin, V.I., Bulk metallic glasses: fabrication, structure and structural changes under heating, Russ. J. Non-Ferrous Met., 2016, vol. 57, no. 1, pp. 25–32.

    Article  Google Scholar 

  5. Inoue, A., Ohtera, K., Tsai, A.P., and Masumoto, T., New amorphous Al–Y, Al–La and Al–Ce alloys prepared by melt spinning, J. Appl. Phys., 1988, vol. 27, pp. 736–739.

    Article  Google Scholar 

  6. He, Y., Poon, S.J., and Shiflet, G.J., Synthesis and properties of metallic glasses that contain aluminum, Science, 1988, vol. 241, pp. 1640–1642.

    Article  Google Scholar 

  7. Uporov, S.A., Uporova, N.S., Bykov, V.A., Kulikova, T.V., and Pryanichnikov, S.V., Effect of replacing RE and TM on magnetic properties and thermal stability of some Al–Ni-based amorphous alloys, J. Alloys Compd., 2014, vol. 586, pp. 310–313.

    Article  Google Scholar 

  8. Bacewicz, R. and Antonowicz, J., XAFS study of amorphous Al–RE alloys, Scripta Mater., 2006, vol. 56, pp. 1187–1191.

    Article  Google Scholar 

  9. Pershina, E., Matveev, D., Abrosimova, G., and Aronin, A., Formation of nanocrystals in an amorphous Al90Y10 alloy, Mater. Charact., 2017, vol. 133, pp. 87–93.

    Article  Google Scholar 

  10. Baoan Sun, Xiufang Bian, Jing Hu, Tan Mao, and Yane Zhang, Fragility of superheated melts in Al–RE (Ce, Nd, Pr) alloy system, Mater. Charact., 2008, vol. 59, pp. 820–823.

    Article  Google Scholar 

  11. Ram S. Maurya and Tapas Laha, Effect of rare earth and transition metal elements on the glass forming ability of mechanical alloyed Al–TM–RE based amorphous alloys, J. Mater. Sci. Technol., 2015, vol. 31, pp. 1118–1124.

    Article  Google Scholar 

  12. Abrosimova, G., Aronin, A., and Budcheko, A., Amorphous phase decomposition in Al–Ni–RE system alloys, Mater. Lett., 2015, vol. 139, pp. 194–196.

    Article  Google Scholar 

  13. Huang, Z.H., Li, J.F., Rao, Q.L., and Zhou, Y.H., Primary crystallization of Al–Ni–RE amorphous alloys with different type and content of RE, Mater. Sci. Eng. A, 2008, vol. 489, pp. 380–388.

    Article  Google Scholar 

  14. Wang, S.H. and Bian, X.F., Effect of Si and Co on the crystallization of Al–Ni–RE amorphous alloys, J. Alloys Compd., 2008, vol. 453, pp. 127–130.

    Article  Google Scholar 

  15. Nianchu Wu, Jingbao Lian, Rui Wang, Ronghua Li, and Wei Liu, Effect on element type on glass forming ability of Al–TM–RE ternary metallic glasses using electron structure guiding, J. Alloys Compd., 2017, vol. 723, pp. 123–128.

    Article  Google Scholar 

  16. Rizzi, P. and Batezatti, L., Microhardness and devitrification studies of Al–TM–RE alloys, J. Alloys Compd., 2007, vol. 434, pp. 36–39.

    Article  Google Scholar 

  17. Rizzi, P., Baricco, M., Borace, S., and Batezatti, L., Phase selection in Al–TM–RE alloys: nanocrystalline Al versus intermetallics, Mater. Sci. Eng. A, 2001, vols. 304–306, pp. 574–578.

  18. Inoue, A. and Kimura, H.M., Fabrications and mechanical properties of bulk amorphous, nanocrystalline, nanoquasicrystalline alloys in aluminium-based system, J. Light Met., 2001, vol. 1, pp. 31–41.

    Article  Google Scholar 

  19. Inoue, A., Ohtera, K., Tsai, A.P., and Masumoto, T., New amorphous alloys with good ductility in Al–Y–M and Al–La–M (M = Fe, Co, Ni or Cu) systems, J. Appl. Phys., 1988, vol. 27, pp. 280–282.

    Article  Google Scholar 

  20. Shihlet, G.J., He, Y., and Poon, S.J., Mechanical properties of a new class of metallic glasses based on aluminum, J. Appl. Phys., 1988, vol. 64, pp. 6863–6865.

    Article  Google Scholar 

  21. He, Y., Poon, S.J., and Shiflet, G.J., Synthesis and properties of metallic glasses that contain aluminum, Science, 1988, vol. 241, pp. 1640–1642.

    Article  Google Scholar 

  22. Ma, C.S., Zhang, J., Chang, X.C., Hou, W.L., and Wang, J.Q., Electronegativity difference as a factor for evaluating the thermal stability of Al-rich metallic glasses, Phil. Mag. Lett., 2008, vol. 88, pp. 917–924.

    Article  Google Scholar 

  23. Kim, Y.H., Inoue, A., and Masumoto, T., Ultrahigh mechanical strengths of Al88Y2Ni10 – xMx (M = Mn, Fe or Co) amorphous alloys containing nanoscale fcc-Al particles, Mater. Trans., 1991, vol. 32, pp. 599–608.

    Article  Google Scholar 

  24. Wang J.Q., Zhang, H.W., Gu, X.J., Lu, K., Sommer, F., and Mittemeijer, E.J., Identification of nanocrystal nucleation and growth in Al85Ni5Y8Co2 metallic glass with quenched-in nuclei, Appl. Phys., 2002, vol. 80, pp. 3319–3321.

    Google Scholar 

  25. He, Y., Poon, J.F., and Shiflet, G.Y., Ball milling-induced nanocrystal formation in aluminum-based metallic glasses, Acta Metall. Mater., 1995, vol. 43, pp. 83–91.

    Article  Google Scholar 

  26. Setywan, A.D., Louzguine, D.V., Sasamori, K., Kimura, H.M., Ranganathan, S., and Inoue, A., Phase composition and transformation behavior of rapidly solidified Al–Ni–Fe alloys in άeAl decagonal phase region, J. Alloys Compd., 2005, vol. 399, pp. 132–138.

    Article  Google Scholar 

  27. Louzguine, D.V. and Inoue, A., Crystallization behaviour of Al-based metallic glasses below and above the glass-transition temperature, J. Non-Cryst. Solids, 2002, vol. 311, pp. 281.

    Article  Google Scholar 

  28. Louzguine-Luzgin, D.V. and Inoue, A., Comparative study of the effect of cold rolling on the structure of Al–RE–Ni–Co (RE = rare-earth metals) amorphous and glassy alloys, J. Non-Cryst. Solids, 2006, vol. 352, pp. 3903–3909.

    Article  Google Scholar 

  29. Inoue, A., Zhang, T., Chen, M.W., Sakurai, T., Saida, J., and Matsushita, M., Ductile quasicrystalline alloys, Appl. Phys. Lett., 2000, vol. 76, pp. 967–969.

    Article  Google Scholar 

  30. Kaloshkin, S.D. and Tomilin, I.A., The crystallization kinetics of amorphous alloys, Thermochim. Acta, 1996, vol. 280, pp. 303–317.

    Article  Google Scholar 

  31. Louzguine, D.V., Amorphous and nanocrystalline materials based on aluminum, Metalloved. Term. Obrab. Met., 2001, vol. 10, pp. 12–17.

    Google Scholar 

  32. Louzguine, D.V. and Pol’kin, V.I., Properties of bulk metallic glasses, Russ. J. Non-Ferrous Met., 2017, vol. 58, no. 1, pp. 80–92.

    Article  Google Scholar 

  33. Kim, Y.H., Inoue, A., and Masumoto, T., Ultrahigh tensile strength of Al88Y2Ni9M1 (M = Mn or Fe) amorphous alloys containing finely dispersed fcc-Al particles, Mater. Trans., 1991, vol. 31, pp. 747–749.

    Article  Google Scholar 

  34. Kim, W., Oh, H.S., and Park, E.S., Manipulation of thermal and mechanical stability by addition of multiple equiatomic rare-earth elements in Al–TM–RE metallic glasses, Intermetallics, 2017, vol. 91, pp. 8–15.

    Article  Google Scholar 

  35. Abrosimova, G., Aronin, A., and Barkalov, O., Matveev, D., Rybchenko, O., Maslov, V., and Tkach, V., Structural transformations in Al85Ni6.1Co2Gd6Si10.9 amorphous alloy during multiple rolling, Phys. Solid State, 2011, vol. 53, no. 2, pp. 229–233.

    Article  Google Scholar 

  36. Abrosimova, G.E. and Aronin, A.S., The fine structure of FCC nanocrystals in Al- and Ni-based alloys, Phys. Solid State, 2002, vol. 44, no. 6, pp. 1003–1007.

    Article  Google Scholar 

  37. Aronin, A.S., Abrosimova, G.E., and Kir’yanov, Yu.V., Formation and structure of nanocrystals in an Al86Ni11Yb3 alloy, Phys. Solid State, 2001, vol. 43, no. 11, pp. 2003–2011.

    Article  Google Scholar 

  38. Abrosimova, G.E. and Aronin, A.S., Effect of the concentration of a rare-earth component on the parameters of the nanocrystalline structure in aluminum-based alloys, Phys. Solid State, 2009, vol. 51, no. 9, pp. 1765–1771.

    Article  Google Scholar 

  39. Tkatch, V.I., Rassolov, S.G., Popov, V.V., Maksimov, V.V., Maslov, V.V., Nosenko, V.K., Aronin, A.S., Abrosimova, G.E., and Rybchenko, O.G., Complex crystallization mode of amorphous/nanocrystalline composite Al86Ni2Co5.8Gd5.7Si0.5, J. Non-Cryst. Solids, 2011, vol. 357, pp. 1628–1631.

    Article  Google Scholar 

  40. Greer, A.L., Partially or fully devitrified alloys for mechanical properties, Mater. Sci. Eng., 2001, vol. 304, pp. 68–72.

    Article  Google Scholar 

  41. Jiaming Yin, Hongnian Cai, Xingwang Cheng, Hongmei Zhang, Xinqiang Zhang, and Ziqi Xu, Enhanced mechanical properties due to nanocrystallization by isothermal annealing in Al85Ni9Er6 glassy alloy, J. Alloys Compd., 2017, vol. 695, pp. 3048–3053.

    Article  Google Scholar 

  42. Bazlov, A.I., Tabachkova, N.Yu, Zolotorevsky, V.S., and Louzguine-Luzgin, D.V., Unusual crystallization of Al85Y8Ni5Co2 metallic glass observed in situ in TEM at different heating rates, Intermetallics, 2018, vol. 94, pp. 192–199.

    Article  Google Scholar 

  43. Abrosimova, G.E., Evolution of the structure of metallic glasses under external effects, Extended Abstract of Doctoral (Phys.-Math.) Dissertation, Chernogolovka: Inst. Fiz. Tverd. Tela Ross. Akad. Nauk, 2012.

  44. Abrosimova, G.E., Aronin, A.S., Barkalov, O.I., and Dement’eva, M.M., Formation of the nanostructure in amorphous alloys of the Al–Ni–Y system, Phys. Solid State, 2013, vol. 55, no. 9, pp. 1773–1778.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Program for Increasing the Competitiveness of National University of Science and Technology “MISiS” (project nos. K2-2014-013 and K2-2017-089) and by the Russian Scientific Foundation, project no. 18-52-53027.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. G. Igrevskaya, A. I. Bazlov, N. Yu. Tabachkova, D. V. Louzguine or V. S. Zolotorevskiy.

Additional information

Translated by N. Korovin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Igrevskaya, A.G., Bazlov, A.I., Tabachkova, N.Y. et al. Influence of Annealing at Various Temperatures on the Structure and Hardness of Amorphous Ribbons of the Al85Y8Ni5Co2 Alloy. Russ. J. Non-ferrous Metals 59, 520–526 (2018). https://doi.org/10.3103/S1067821218050061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821218050061

Keywords:

Navigation