Skip to main content
Log in

Variation in Strength, Hardness, and Fracture Toughness in Transition from Medium-Grained to Ultrafine Hard Alloy

  • THEORY AND PROCESSES OF FORMING AND SINTERING OF POWDER MATERIALS
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The microstructure and mechanical characteristics of the samples of medium-grained (WC‒8Co), submicron (WC–8Co–1Cr3C2), and ultrafine (WC–8Co–0.4VC–0.4Cr3C2) hard alloys formed by liquid-phase sintering of powders of corresponding dispersity are investigated. It is shown that the alloy hardness increases from 1356 to 1941 HV with a decrease in the average grain size from 1.65 to 0.37 μm. The comparison with the published data shows that alloys considered in this study are no worse than analogs formed by sintering under a pressure, hot pressing, and induction and spark plasma sintering by hardness and fracture toughness. Herewith, the flexural strength of alloys prepared by liquid-phase sintering is lower by a factor of 1.5–2.5 than that of alloys formed by sintering under a pressure or pressing because of the presence of pores, the maximal diameter of which is evaluated as 40 μm. An analysis of the results and published data for the correspondence of theoretical regularities is performed. It is shown that the dependences of hardness, fracture toughness, and strength on the average grain size of formed alloys and their analogs in general correspond to traditional regularities based on the Hall–Petch and Orowan–Griffiths laws, despite the presence of theoretical prerequisites for the deviation from them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. Photographs using a scanning microscope were formed at the Far Eastern Electronic Microscopy Center on the basis of the IBM of the Far East Branch of the Russian Academy of Sciences.

REFERENCES

  1. Grigor’ev, S.N. and Tabakov, V.P., Tekhnologicheskie metody povysheniya iznosostoikosti kontaktnykh ploshchadok rezhushchego instrumenta (Manufacturing Methods of Increasing the Wear Resistance of Contact Areas of the Cutting Tool), Staryi Oskol: TNT, 2011.

  2. Geoffrey, E. and Spriggs, A., History of fine grained hardmetal, Int. J. Refract. Met. Hard Mater., 1995, vol. 13, pp. 241–255.

    Article  Google Scholar 

  3. Panov, V.S. and Zaitsev, A.A., Tendencies in the development of the technology of ultradispersed and nanodimensional W–Co hard alloys, Izv. Vyssh. Uchebn. Zaved. Poroshk. Metall. Funkts. Pokryt., 2014, no. 3, pp. 38–48.

  4. Zak Fang, Z., Xu Wang, Taegong Ryu, Kyu Sup Hwang, and Sohn, H.Y., Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide: A review, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 288–299.

    Article  Google Scholar 

  5. Shatov, A.V., Ponomarev, S.S., and Firstov, S.A., Fracture and strength of hardmetals at room temperature, Compr. Hard Mater., 2007, vol. 1, pp. 38–43.

    Google Scholar 

  6. Mukhopadhyay, A. and Basu, B., Consolidation-microstructure-property relationships in bulk nanoceramics and ceramic nanocomposites: A review, Int. Mater. Rev., 2007, vol. 52, no. 5, pp. 257–288.

    Article  Google Scholar 

  7. Gille, G., Szesny, B., Dreyer, K., Berg, H., Schmidt, J., Gestrich, T., and Leitner, G., Submicron and ultrafine grained hardmetals for microdrills and metal cutting inserts, Int. J. Refract. Met. Hard Mater., 2002, vol. 20, pp. 3–22.

    Article  Google Scholar 

  8. Hiroyuki Saito, Akira Iwabuchi, and Tomoharu Shimizu, Effects of Co content and WC grain size on wear of WC cemented carbide, Wear, 2006, vol. 261, pp. 126–132.

    Article  Google Scholar 

  9. Jia, K. and Fischer, T.E., Sliding wear of conventional and nanostructured cemented carbides, Wear, 2001, vols. 203–204, pp. 310–318.

    Google Scholar 

  10. Krakhmalev, P.V., Adeva Rodil, T., and Bergstrom, J., Influence of microstructure on the abrasive edge wear of WC–Co hardmetals, Wear, 2007, vol. 263, pp. 240–245.

    Article  Google Scholar 

  11. Allen, C., Sheen, M., Williams, J., and Pugsley, V.A., The wear of ultrafine WC–Co hard metals, Wear, 2001, vol. 250, pp. 604–610.

    Article  Google Scholar 

  12. Dvornik, M.I. and Zaitsev, A.V., Comparative analysis of the wear resistance of WC–8Co–1Cr3C2 and traditional hard alloys under dry friction, Perspekt. Mater., 2015, no. 5, pp. C. 34–41.

  13. Dvornik, M.I., Mokritskii, B.Ya., and Zaitsev, A.V., Comparative analysis of microabrasive durability of traditional carbide and carbide submicron WC–8Co–1Cr3C2, Vopr. Materialoved., 2015, no. 1 (81), pp. 45–51.

  14. Ken Brookes, What’s in a name? Nano Experts Seek Definitions, 2006, vol. 6, pp. 24–26.

    Google Scholar 

  15. Zhi-Hui Xu and John Agren, A modified hardness model for WC–Co cemented carbides, Mater. Sci. Eng. A, 2004, vol. 386, pp. 262–268.

    Article  Google Scholar 

  16. Engqvist, H., Jacobson, S., and Axen, N., A model for the hardness of cemented carbides, Wear, 2002, vol. 252, pp. 384–393.

    Article  Google Scholar 

  17. Makhele-Lecala, L., Luiyckx, S., and Nabarro, F.R.N., Semiempirical relationship between hardness, grain size and mean free path of WC–Co, Int. J. Refract. Met. Hard Mater., 2001, vol. 19, pp. 245–249.

    Article  Google Scholar 

  18. Seung I. Cha, Kyong H. Lee, Ho J. Ryu, and Soon H. Hong, Analytical modeling to calculate the hardness of ultrafine WC–Co cemented carbides, Mater. Sci. Eng. A, 2008, vol. 489, pp. 234–244.

    Article  Google Scholar 

  19. Jia, K., Fischer, T.E., and Gallois, B., Microstructure, hardness and toughness of nanostructured and conventional WC–Co composites, Nanostruct. Mater., 1998, vol. 10, no. 5, pp. 875–891.

    Article  Google Scholar 

  20. Binghai Liu, Yue Zhang, and Shixi Ouyang, Study on the relation between structural parameters and fracture strength of WC–Co cemented carbides, Mater. Chem. Phys., 2000, vol. 62, no. 1, pp. 35–43.

    Article  Google Scholar 

  21. Chongbin Wei, Xiaoyan Song, Jun Fu, Xuemei Liu, Haibin Wang, Yang Gao, and Yao Wang, Simultaneously high fracture toughness and transverse rupture strength in ultrafine cemented carbide, Cryst. Eng. Comm., 2013, vol. 15, pp. 3305–3307.

  22. Leon L. Shawa, Hong Luob, Yang Zhong, WC–18 wt % Co with simultaneous improvements in hardness and toughness derived from nanocrystalline powder, Mater. Sci. Eng. A, 2012, vol. 537, pp. 39–48.

  23. Wu Chong-hu and Zhang Tai-quan, Formation mechanisms of microstructure imperfections and their effects on strength in submicron cementer carbide, Int. J. Refract. Met. Hard Mater., 2013, vol. 40, pp. 8–13.

    Article  Google Scholar 

  24. Kurlov, A.S., Rempel’, A.A., Leenaers, A., and Van Der Bergh, S., Flexural strength and microhardness of WC–8% Co hard alloys based on powders of different dispersity, Materialovedenie, 2009, no. 4, pp. 18–21.

  25. Zhikang Zak Fang, Correlation of transverse rupture strength of WC–Co with hardness, Int. J. Refract. Met. Hard Mater., 2005, vol. 23, no. 2, pp. 119–127.

  26. Sherif El-Eskandarany, M., Amir A. Mahday, Ahmed, H.A., and Amer, A.H., Synthesis and characterizations of ball-milled nanocrystalline WC and nanocomposite WC–Co powders and subsequent consolidations, J. Alloys Compd., 2000, vol. 312, pp. 315–325.

    Article  Google Scholar 

  27. Hwan-Cheol Kim, In-Jin Shon, Jin-Kook Yoon, and Jung-Mann Doh, Consolidation of ultra fine WC and WC–Co hard materials by pulsed current activated sintering and its mechanical Properties, Int. J. Refract. Met. Hard Mater., 2007, vol. 25, no. 1, pp. 46–52.

  28. Hwan Cheol Kim, In Kyoon Jeong, In Jin Shon, In Yong Ko, and Jung Mann Doh, Fabrication of WC–8 wt % Co hard materials by two rapid sintering processes, Int. J. Refract. Met. Hard Mater., 2007, vol. 25, no. 4, pp. 336–340.

    Article  Google Scholar 

  29. Friederichs, J.W., US Patent 5368628, 2000.

  30. Panov, V.S., Tekhnologiya i svoistva spechennykh tverdykh splavov i izdelii iz nikh (Technology and Properties of Sintered Hard Alloys and Wares Made of Them), Moscow: MISiS, 2001.

  31. Tret’yakov, V.I., Osnovy metallovedeniya i tekhnologii proizvodstva spechennykh tverdykh splavov (Fundamentals of Metallurgy and Technology of Sintered Hard Alloys), Moscow: Metallurgiya, 1976.

  32. Dvornik, M.I., Zaitsev, A.V., and Ershova, T.B., Increasing strength and hardness of submicron WC–8% Co–1% Cr3C2 hard alloy due to addition carburization during sintering, Vopr. Materialoved., 2011, no. 4 (68), pp. 81–88.

  33. Shetty, D.K., Wright, I.G., Mincer, P.N., and Clauer, A.H., Indentation fracture of WC–Co cermets, J. Mater. Sci., 1985, vol. 20, pp. 1873–1882.

    Article  Google Scholar 

  34. Yamamoto, T., Ikuhara, Y., Watanabe, T., Sakuma, T., Taniuchi, Y., Okada, K., and Tanase, T., High resolution microscopy study in Cr3C2-doped WC–CO, J. Mater. Sci., 2001, vol. 36, pp. 3885–3890.

    Article  Google Scholar 

  35. Yamamoto, T., Ikuhara, Y., and Sakuma, T., High resolution transmission electron microscopy study in VC-doped WC–Co compound, Sci. Technol. Adv. Mater., 2000, vol. 1, pp. 97–104.

    Article  Google Scholar 

  36. Yigao Yuan, Xiaoxiao Zhang, Jianjun Ding, and Jun Ruan, Measurement of WC grain size in ultrafine grained WC–Co cemented carbides, Appl. Mech. Mater., 2013, vols. 278–280, pp. 460–463.

  37. Chernyavskii, K.S. and Travushkin, G.G., Modern notions on the relation of the structure and strength of WC–Co hard alloys (review), Probl. Prochn., 1980, no. 4, pp. 11–19.

  38. Chaporova, I.N. and Chernyavskii, K.S., Struktura spechennykh tverdykh splavov (Structure of Sintered Hard Alloys), Moscow: Metallurgiya, 1975.

  39. Exner, H.E. and Fischmeister, H.F., Structure of sintered tungsten carbide–cobalt alloys, Arch. Eisenhuttenwesen, 1966, vol. 37, pp. 417–426.

    Google Scholar 

  40. Lee, H.C. and Gurland, J., Hardness and deformation of cemented tungsten carbide, Mater. Sci. Eng., 1978, vol. 33, no. 1, pp. 125–133.

    Article  Google Scholar 

  41. Sigl, L.S. and Fischmeister, H.F., On the fracture toughness of cemented carbides, Acta Metal., 1988, vol. 36, no. 4, pp. 887–891.

    Article  Google Scholar 

  42. Luyckx, S. and Love, A., The dependence of the contiguity of WC on Co content and its independence from WC grain size in WC–Co alloys, Int. J. Refract. Met. Hard Mater., 2006, vol. 24, pp. 75–79.

    Article  Google Scholar 

  43. Felten, F., Schneider, A., and Sadowski, T., Estimation of R-curve in WC/Co cermet by CT test, Int. J. Refract. Met. Hard Mater., 2008, vol. 26, pp. 55–60.

    Article  Google Scholar 

  44. Cahal McVeigh and Wing Kam Liu, Multiresolution modeling of ductile reinforced brittle composites, J. Mech. Phys. Sol., 2009, vol. 57, pp. 244–267.

  45. Dvornik, M.I. and Mikhailenko, E.A., Modeling of the spread of cracks in submicron and nanostructured hard alloys, Mekh. Kompoz. Mater. Pokr., 2014, vol. 20, no. 1, pp. 197–210.

    Google Scholar 

  46. Mandel, K., Kruger, L., and Schimpf, C., Study on parameter optimization for field-assisted sintering of fully-dense, near-nano WC–12Co, Int. J. Refract. Met. Hard Mater., 2014, vol. 45, pp. 153–159.

    Article  Google Scholar 

  47. Godse, R. and Gurland, J., Applicability of the critical strain fracture criterion to WC–Co hard metals Pt. 2, Mater. Sci. Eng. A, 1988, vols. 105–106, pp. 331–336.

  48. Osterstock, F. and Chermant, J.-L., Some aspects of the fracture of WC–Co composites, Sci. Hard Mater., 1983, pp. 615–629.

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by grant no. 9.251.2014/K, project code 251.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. I. Dvornik or A. V. Zaitsev.

Additional information

Translated by N. Korovin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvornik, M.I., Zaitsev, A.V. Variation in Strength, Hardness, and Fracture Toughness in Transition from Medium-Grained to Ultrafine Hard Alloy. Russ. J. Non-ferrous Metals 59, 563–569 (2018). https://doi.org/10.3103/S1067821218050024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821218050024

Keywords:

Navigation