Skip to main content
Log in

Synthesis of Ceramic Materials Based on Titanium Carbide with a Cobalt Binder for the Pulsed Electrospark Deposition of Bioactive Coatings with an Antibacterial Effect

  • Self-Propagating High-Temperature Synthesis
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The goal of this study was to produce biocompatible ceramic materials in the Ti–C–Co–Ca3(PO4)2–Ag–Mg system by combustion mode synthesis. The influence of cobalt on combustion parameters of the mixture, structure, and properties of the products was investigated. Compact ceramics consist of a combined grain frame of nonstoichiometric titanium carbide (TiC0.5–TiC0.6) with the titanium phosphate (Ti3POx) phase homogeneously distributed along grain boundaries and local isolations of calcium oxide (CaO). The introduction of cobalt promotes the formation of a complex phosphide CoTiP and TiCo intermetallic compound. Alloying with silver and magnesium leads to the formation of a silver-based solid solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mishnaevsky, L.Jr., Levashov, E., Valiev, R.Z., Segurado, J., Sabirov, I., Enikeev, N., Prokoshkin, S., Solov’yov, A.V., Korotitskiy, A., Gutmanas, E., Gotman, I., Rabkin, E., Psakh’e, S., Dluhoš, L., Seefeldt, M., and Smolin, A., Nanostructured titaniumbased materials for medical implants: Modeling and development, Mater. Sci. Eng. R, 2014, vol. 81, pp. 1–19.

    Article  Google Scholar 

  2. Carlos Nelson Eliasa, Daniel Jogaib Fernandes, Celso, R.S. Resende, and Jochen Roestel, Mechanical properties, surface morphology andstability of a modified commercially pure highstrength titanium alloy for dental implants, Dental Mater., 2015, vol. 31, no. 2, pp. e1–e13.

    Article  Google Scholar 

  3. Naddeo, P. Laino, L., La Noce, M., Piattelli, A., De Rosa, A., Iezzi, G., Lainod, G., Painoa, F., Papaccio, G., and Tirino, V., Surface biocompatibility of differently textured titanium implants with mesenchymal stem cells, Dental Mater., 2015, vol. 31, no. 3, pp. 235–243.

    Article  Google Scholar 

  4. Bosco, R., Edreira, E.R.U., Wolke, J.G., and Leeuwenburgh, S.C., van den Beucken, J.J., and Jansen, J.A., Instructive coatings for biological guidance of bone implants, Surf. Coat. Technol., 2013, vol. 233, pp. 91–98.

    Article  Google Scholar 

  5. Cloutier, M., Mantovani, D., and Rosei, F., Special focus on materials: Review. Antibacterial coatings: Challenges, perspectives and opportunities, Trends Biotechnol., 2015, vol. 33, pp. 637–652.

    Article  Google Scholar 

  6. Gitlevich, A.E., Mikhailov, V.V., Parkanskii, N.Ya., and Revutskii, V.M., Elektroiskrovoe legirovanie metallicheskikh poverkhnostei (Electrospark Alloying of Metallic Surfaces), Petrov, Yu.I., Ed., Kishinev: Shtiintsa, 1985.

  7. Nikaido, T., Tsuru, K., Munar, M., Maruta, M., Matsuya, S., Nakamura, S., and Ishikawa, K., Fabrication of ß-TCP foam: Effects of magnesium oxide as phase stabilizer on its properties, Ceram. Int., 2015, vol. 41, pp. 14245–14250.

    Article  Google Scholar 

  8. Engin, N.O. and Tas, A.C., Preparation of porous Ca10(PO4)6(OH)2 and ß-Ca3(PO4)2 bioceramics, J. Am. Ceram. Soc., 2000, vol. 83, pp. 1581–1584.

    Article  Google Scholar 

  9. Surmenev, R.A., Surmeneva, M.A., and Ivanova, A.A., Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis: Review, Acta Biomater., 2014, vol. 10, pp. 557–579.

    Article  Google Scholar 

  10. Zhang, B.G., Myers, D.E., Wallace, G.G., Brandt, M., and Choong, P.F., Bioactive coatings for orthopaedic implants—recent trends in development of implant coatings, Int. J. Molecular Sci., 2014, vol. 15, pp. 11878–11921.

    Article  Google Scholar 

  11. Mahdieh Bashoor-Zadeh, Gamal Baroud, and Marc Bohner, Simulation of the in vivo resorption rate of ß-tricalcium phosphate bone graft substitutes implanted in a sheep model, Biomaterials, 2011, vol. 32, pp. 6362–6373.

    Article  Google Scholar 

  12. Levashov, E.A., Rogachev, A.S., Epishko, Yu.K., and Kochetov, N.A., Self-propagating high-temperature synthesis of target cathodes in the system Ti–Ta–C–Ca3(PO4)2 for the ion-plasma deposition of multifunctional tissue-compatible nanostructured coatings, Russ. J. Non-Ferrous Met., 2007, vol. 48, pp. 496–506.

    Article  Google Scholar 

  13. Potanin, A.Yu., Levashov, E.A., Pogozhev, Yu.S., Shvindina, N.V., and Kovalev, D.Yu., The features of combustion and structure formation of ceramic materials in the TiC–Ti3POx–CaO system, Ceram. Int., 2015, vol. 41, no. 6, pp. 8177–8185.

    Article  Google Scholar 

  14. Loginov, P.A., Levashov, E.A., Potanin, A.Yu., Kudryashov, A.E., Manakova, O.S., Shvyndina, N.V., and Sukhorukova, I.V., Sintered Ti–Ti3P–CaO electrodes and their application for pulsed electrospark treatment of titanium, Ceram. Int., 2016, vol. 42, no. 6, pp. 7043–7053.

    Article  Google Scholar 

  15. Levashov, E.A., Rogachev, A.S., Kurbatkina, V.V., Maksimov, Yu.M., and Yukhvid, V.I., Perspektivnye materialy i tekhnologii samorasprostranyayushchegosya vysokotemperaturnogo sinteza (Advanced SHS Materials and Technologies), Moscow: MISIS, 2011.

    Google Scholar 

  16. Yeh, C.L. and Yeh, C.C., Preparation of CoTi intermetallics by self-propagating combustion synthesis, J. Alloys Compd., 2005, vol. 396, pp. 228–232.

    Article  Google Scholar 

  17. Kamynina, O.K., Gotman, I., Gutmanas, E., Sytschev, A.E., Vadchenko, S.G., and Balikhina, E.N., Combustion synthesis of porous Ti–Co alloys for orthopedic applications, Int. J. SHS, 2009, vol. 18, pp. 102–108.

    Google Scholar 

  18. Sytschev, A.E., Kamynina, O.K., Umarov, L.M., Shchukin, A.S., and Vadchenko, S.G., Porous Ti–Co alloys and their joining with titanium by SHS cladding, Int. J. SHS, 2015, vol. 24, pp. 171–173.

    Google Scholar 

  19. Sychev, A.E., Kamynina, O.K., Umarov, L.M., Schukin, A.S., and Zhidkov, M.V., SHS of composite materials based on Ti–Co, Mod. Probl. Sci. Educ., 2014, vol. 12, pp. 1912–1916.

    Google Scholar 

  20. Sytschev, A.E., Vadchenko, S.G., Kamynina, O.K., Balikhina, E.N., Plashchina, I.G., Krylova, E.A., Grigor’yan, A.S., Toporkova, A.K., Konovalov, A.N., and Selezneva, I.I., Porous materials from titanium–cobalt alloys for hybrid implants, Cell Technol. Biol. Med., 2009, vol. 1, pp. 160–165.

    Google Scholar 

  21. Simchi, A., Tamjid, E., Pishbin, F., and Boccaccini, A.R., Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications, Nanomed.: Nanotechnol., Biol. Med., 2011, vol. 7, pp. 22–39.

    Article  Google Scholar 

  22. Reyes-Vidal, Y., Suarez-Rojas, R., Ruiz, C., Torres, J., Stefan Talu, Alia Mendez, and Trejo, G., Electrodeposition, characterization, and antibacterial activity of zinc/silver particle composite coatings, Appl. Surf. Sci., 2015, vol. 342, pp. 34–41.

    Article  Google Scholar 

  23. Stevens, K.N.J., Crespo-Biel, O., Bosch, E.E., Dias, A.A., Knetsch, M.L., Aldenhoff, Y.B., van der Veen, F.H., Maessen, J.G., Stobberingh, E.E., and Koole, L.H., The relationship between the antimicrobial effect of catheter coatings containing silver nanoparticles and the coagulation of contacting blood, Biomaterials, 2009, vol. 30, pp. 3682–3690.

    Article  Google Scholar 

  24. Chena, W., Liu, Y., Courtney, H.S., Bettenga, M., Agrawal, C.M., Bumgardner, J.D., and Ong, J.L., In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating, Biomaterials, 2006, vol. 27, pp. 5512–5517.

    Article  Google Scholar 

  25. Shtansky, D.V., Batenina, I.V., Kiryukhantsev-Korneev, Ph.V., Sheveyko, A.N., Kuptsov, K.A., Zhitnyak, I.Y., Anisimova, N.Yu., and Gloushankova, N.A., Ag-and Cu-doped multifunctional bioactive nanostructured TiCaPCON films, Appl. Surf. Sci., 2013, vol. 285, pp. 331–343.

    Article  Google Scholar 

  26. Mróz, W., Bombalska, A., Burdynska, S., Jedynski, M., Prokopiuk, A., Budner, B., Slósarczyk, A., Zima, A., Menaszek, E., Scislowska-Czarnecka, A., and Niedzielski, K., Structural studies of magnesium doped hydroxyapatite coatings after osteoblast culture, J. Mol. Struct., 2010, vol. 977, pp. 145–152.

    Article  Google Scholar 

  27. Danielle Laurencin, Neyvis Almora-Barrios, Nora H de Leeuw, Christel Gervais, Christian Bonhomme, Francesco Mauri, Wojciech Chrzanowski, Jonathan C. Knowles, Robert J. Newport, Alan Wong, Zhehong Gan, and Mark E. Smith, Magnesium incorporation into hydroxyapatite, Biomaterials, 2011, vol. 32, pp. 1826–1837.

    Article  Google Scholar 

  28. Webster, T.J., Massa-Schueter, E.A., Smith, J.L., and Slamovich, E.B., Osteoblast response to hydroxyapatite doped with divalent and trivalent cations, Biomaterials, 2004, vol. 25, pp. 2111–2121.

    Article  Google Scholar 

  29. Zueva, L.V. and Gusev, A.I., Effect of nonstoichiometry and ordering on the period of the basis structure of cubic titanium carbide, Phys. Solid State, 1999, vol. 41, pp. 1032–1038.

    Article  Google Scholar 

  30. Murray, J.L., The Co–Ti (cobalt–titanium) system, Bull. Alloy Phase Diagr., 1982, vol. 3, pp. 74–85.

    Article  Google Scholar 

  31. Gorelik, S.S., Skakov, Yu.A., and Rastorguev, L.N., Rentgenograficheskii i elektronno-opticheskii analiz (X-Ray and Electron-Optical Analysis), Moscow: MISIS, 1994.

    Google Scholar 

  32. Nayeb-Hashemi, A.A. and Clark, J.B., The Ag–Mg (silver–magnesium) system, Bull. Alloy Phase Diagr., 1984, vol. 5, pp. 348–358.

    Article  Google Scholar 

  33. Drits, M.E., Budberg, P.B., Burkhanov, G.S., Drits, A.M., and Panovko, V.M., Svoistva elementov (Properties of Elements), Moscow: Metallurgiya, 1985.

    Google Scholar 

  34. Kiparisov, S.S., Levinsky, Yu.V., and Petrov, A.P., Karbid titana: poluchenie, svoistva, primenenie (Titanium Carbide: Production, Properties and Application), Moscow: Metallurgiya, 1987.

    Google Scholar 

  35. Ziemnicka-Sylwester, M., TiB2-based composites for ultra-high-temperature devices, fabricated by SHS, combining strong and weak exothermic reactions, Materials, 2013, vol. 6, pp. 1903–1919.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Potanin.

Additional information

Original Russian Text © A.Yu. Potanin, Yu.S. Pogozhev, A.V. Novikov, E.A. Levashov, N.A. Kochetov, N.V. Litovchenko, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya, 2017, No. 1, pp. 42–51.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potanin, A.Y., Pogozhev, Y.S., Novikov, A.V. et al. Synthesis of Ceramic Materials Based on Titanium Carbide with a Cobalt Binder for the Pulsed Electrospark Deposition of Bioactive Coatings with an Antibacterial Effect. Russ. J. Non-ferrous Metals 59, 323–330 (2018). https://doi.org/10.3103/S1067821218030112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821218030112

Keywords

Navigation