Skip to main content
Log in

Structure and Properties of Dysprosium Titanate Powder Produced by the Mechanochemical Method

  • Production Processes and Properties of Powders
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The structure and main physicochemical properties of dysprosium titanate powders prepared by mechanochemical synthesis from the low-temperature modification of titanium oxide and modification of dysprosium oxide are investigated applying X-ray phase analysis (XPA), scanning electron microscopy, Raman spectroscopy (Raman spectra), transmission electron microscopy, and chemical analysis. It is established based on XPA that the initial oxides completely transform into X-ray amorphous dysprosium titanate (Dy2TiO5) during the mechanochemical treatment of a mixture for 30–60 min. A microelectron diffraction pattern of Dy2TiO5 powders prepared by mechanosynthesis has a ring structure characteristic of the X-ray amorphous phase with a certain amount of inclusions of a crystalline phase. The dysprosium titanate powder fabricated by induction melting possesses the regular cubic crystalline lattice with a parameter of 3.4 Å.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sickafus, K.E., Grimes, R.W., Valdez, J.A., Cleave, A., Ming, Tang., Ishimaru, Manabu., Corish Siobhan, M., Stanek, Ch.R., and Uberuaga, B.P., Radiationinduced amorphization resistance and radiation tolerance in structurally related oxides, Nature Mater., 2007, no. 6, pp. 217–223.

    Article  Google Scholar 

  2. Risovanny, V.D., Varlashova, E.E., Fridman, S.R., Ponomarenko, V.B., and Shcheglov, A.V., Comparative characteristics of absorbing cluster assemblies WWER-1000 and PWR, Atom. Energ., 1998, vol. 84, no. 6, pp. 508–513.

    Google Scholar 

  3. Belash, N.N., Kushtym, A.V., Tatarinov, V.R., and Chernov, I.A., Analysis of developments of constructions and materials for CPS ARabsorber elements with the increased efficiency, Yadern. Radiats. Tekhnol., 2007, vol. 7, nos. 3–4, pp. 18–28.

    Google Scholar 

  4. Risovanny, V.D., Zakharov, A.V., and Muraleva, E.M., New advanced absorbent materials for nuclear reactors on thermal neutrons, Vopr. Atom. Nauki Tekh. Ser: Fiz. Radiats. Povrezhd. Radiats. Materialoved., 2005, no. 3, pp. 87–93.

    Google Scholar 

  5. Risovanny, V.D., Zakharov, A.V., Muraleva, E.M., Kosenkov, V.M., and Latypov, R.N., Dysprozium hafnate as absorbing material for control rods, J. Nucl. Mater., 2006, vol. 355, pp. 163–170.

    Article  Google Scholar 

  6. Fridman, S.R., Risovanny, V.D., Zakharov, A.V., and Toporova, V.G., Radiation stability of WWER-1000 CPS ARabsorber element with boron carbide, Vopr. Atom. Nauki Tekh. Ser: Fiz. Radiats. Povrezhd. Radiats. Materialoved., 2001, no. 2, pp. 84–90.

    Google Scholar 

  7. Perova, E.B., Spiridonov, L.N., and Komisarova, L.N., Phase equilibria in the HfO2–Dy2O3 system, Izv. Akad. Nauk SSSR. Neorg. Mater., 1982, vol. 8, no. 10, pp. 1878–1882.

    Google Scholar 

  8. Makhmudov, F.A., Shaimardanov, E.N., and Kabgov, Kh.B., Preparation and properties of nanostructured dysprosium oxides, Dokl. Akad. Nauk Resp. Tadzhikistan, 2013, vol. 56, no. 2, pp. 130–134.

    Google Scholar 

  9. Sinha, A. and Sharma, B.P., Development of dysprosium titanate based ceramics, J. Amer. Ceram. Soc., 2005, no. 2, pp. 238–241.

    Google Scholar 

  10. Khalameida, S.V., Some new approaches to mechanochemical synthesis of nanodispersed barium titanate, Nanosist., Nanomater., Nanotechnol. (Ukraina), 2009, vol. 7, no. 3, pp. 911–918.

    Google Scholar 

  11. Xue, J., Wang, J., and Wan, D., Nanosized barium titanate powder by mechanical activation, J. Amer. Ceram. Soc., 2000, vol. 83, no. 1, pp. 232–234.

    Article  Google Scholar 

  12. Lyashenko, L.P., Shcherbakova, L.G., Kolbanev, I.V., Knerel’man, E.I., and Davydova, G.I., Mechanism of structure formation in samarium and holmium titanates prepared from mechanically activated oxides, Inorg. Mater., 2007, vol. 43, no. 1, pp. 46–54.

    Article  Google Scholar 

  13. Szafraniak-Wiza, I., Hilczer, B., Talik, E., Pietraszko, A., and Malic, B., Ferroelectric perovskite nanopowders obtained by mechanochemical synthesis, Process. Appl. Ceram., 2010, vol. 4, no. 3, pp. 99–106.

    Article  Google Scholar 

  14. Anokhin, A.S., Lyanguzov, N.V., Roshal’, S.B., Yuzyuk, Yu.I., and Wen Wang, Raman spectra of polycrystalline bismuth titanate nanotubes, Phys. Solid State, 2011, vol. 53, no. 9, pp. 1867–1871.

    Article  Google Scholar 

  15. Shindo, D. and Oikawa, T., Analytical Electron Microscopy for Materials Science, Tokyo: Springer, 2002.

    Book  Google Scholar 

  16. Brandon, D. and Kaplan, W.D., Microstructural Characterization of Materials, Wiley, 2002, 2nd ed.

    Google Scholar 

  17. Sidorova, O.V., Aleshina, L.A., and Kalinkin, A.M., Influence of mechanical activation of the structural state of strontium titanate, Fundam. Issled., 2014, no. 12–2, pp. 280–288. https://doi.org/www.fundamentalresearch.ru/ru/article/view?id=36218(accessed: May 17, 2016).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zh. V. Eremeeva.

Additional information

Original Russian Text © Zh.V. Eremeeva, V.S. Panov, L.V. Myakisheva, A.N. Lizunov, A.A. Nepapushev, D.A. Sidorenko, A.V. Pavlik, E.V. Apostolova, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya, 2017, No. 1, pp. 11–19.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremeeva, Z.V., Panov, V.S., Myakisheva, L.V. et al. Structure and Properties of Dysprosium Titanate Powder Produced by the Mechanochemical Method. Russ. J. Non-ferrous Metals 59, 304–310 (2018). https://doi.org/10.3103/S1067821218030045

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821218030045

Keywords

Navigation