Skip to main content
Log in

Phase Equilibria in Liquid Metal of the Cu–Al–Cr–O System

  • Metallurgy of Nonferrous Metals
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

A thermodynamic analysis of phase equilibria in the Cu–Al–Cr–O system is carried out. Thermodynamic modeling of the liquidus surface of the Cu2O–Al2O3–Cr2O3 oxide phase diagram is performed. To describe activities of an oxide melt, the approximation of the theory of subregular ionic solutions, the energy parameters of which were determined during modeling, is used. Melting characteristics of the CuCrO2 compound are also evaluated in the course of the calculation. Coordinates of invariant equilibria points implemented in the Cu2O–Al2O3–Cr2O3 ternary oxide system are established by the results of the calculation. Thermodynamic modeling of interaction processes in the Cu–Al–Cr–O system in occurrence conditions of a copper-based metal melt is also performed. The temperature dependence of the equilibrium constant of the reaction that characterizes the formation of the CuCrO2 solid compound from components of the metal melt of the Cu–Al–Cr–O system is determined. The temperature dependence for the first-order interaction parameter (by Wagner) of chromium and oxygen dissolved in liquid copper is found. The results of thermodynamic modeling for the Cu–Al–Cr–O system are presented in the form of the solubility surface of components in metal, which makes it possible to attribute the quantitative variations in the metal melt concentration with qualitative variations in the composition of forming interaction products. It is determined by the results of modeling that particles of the |Al2O3, Cr2O3|sol.sln solid solution are formed at valuable aluminum and chromium concentrations in the copper melt of the Cu–Al–Cr–O system as the main interaction product. The results of the investigation can be interesting for improving the technology process of smelting of chromium bronzes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Osintsev, O.E. and Fedorov, V.N., Med’ i mednye splavy. Otechestvennye i zarubezhnye marki (Copper and Copper Alloys. Domestic and Foreign Brands), Moscow: Mashinostroenie, 2004.

    Google Scholar 

  2. Barmak, K., Cabral, Jr.C., Rodbell, K.P., and Harper, J.M.E., On the use of alloying elements for Cu interconnect applications, J. Vac. Sci. Technol. B, 2006, no. 24, pp. 2485–2498.

    Article  Google Scholar 

  3. Watanabe, Ch., Monzen, R., and Tazaki, K., Mechanical properties of Cu–Cr system alloys with and without Zr and Ag, J. Mater. Sci., 2008, no. 43 (3), pp. 813–819.

    Article  Google Scholar 

  4. Islamgaliev, R.K., Nesterov, K.M., Bourgon, J., Champion, Y., and Valiev, R.Z., Nanostructured Cu–Cr alloy with high strength and electrical conductivity, J. Appl. Phys., 2014, no. 115, pp. 194301–194301-4.

    Article  Google Scholar 

  5. Mysik, R.K., Brusnitsyn, S.V., Sulitsin, A.V., Ivkin, M.O., and Karpinskii, A.V., Features of copper alloys cast bars production, Vestn. Yuzh.-Ural. Gos. Univ. Ser. Metall., 2014, no. 2, pp. 26–34.

    Google Scholar 

  6. Dammschroder A., Maurell-Lopez S., Friedrich B. Development of process slags for Cu–Cr-recycling processes, in: Proc. EMC 2009, Pennsylvania: 2009, pp. 1–16.

    Google Scholar 

  7. Kulikov, I.S., Raskislenie metallov (Deoxidation of Metals), Moscow: Metallurgiya, 1975.

    Google Scholar 

  8. Mikhailov, G.G., Leonovich, B.I., and Kuznetsov, Yu.S., Termodinamika metallurgicheskikh protsessov i sistem (Thermodynamics of Metallurgical Processes and Systems), Moscow: MISIS, 2009.

    Google Scholar 

  9. Mikhailov, G.G., Trofimov, E.A., and Sidorenko, A.Yu., Fazovye ravnovesiya v mnogokomponentnykh sistemakh s zhidkimi tsvetnymi metallami (Phase Equilibria in Multicomponent Systems with Liquid Nonferrous Metals), Moscow: MISIS, 2009.

    Google Scholar 

  10. Decterov, S.A., Jung, I.-H., Jak, E., Kang, Y.-B., Hayes, P., and Pelton, A.D., Thermodynamic modeling of the Al2O3–CaO–CoO–CrO–Cr2O3–FeO–Fe2O3–MgO–MnO–NiO–SiO2–S system and applications in ferrous process metallurgy, in: Proc. VII Int. Conf. Molten Slags Fluxes & Salts, Johannesburg: 2004, pp. 839–850.

    Google Scholar 

  11. Yang, Sh., Li, J., Zhang, L., Peaslee, K., and Wang, Z., Evolution of MgO·Al2O3 based inclusions in alloy steel during the refining process, Metall. Min. Ind., 2010, no. 2 (2), pp. 87–92.

    Google Scholar 

  12. Samoilova, O.V., Makrovets, L.A., Mikhailov, G.G., and Trofimov, E.A., Thermodynamic analysis of the Cu–Si–Ni–O system, Russ. J. Non-Ferrous Met., 2012, vol. 53, no. 3, pp. 223–228.

    Article  Google Scholar 

  13. Samoylova, O.V., Mikhailov, G.G., Makrovets, L.A., Trofimov, E.A., and Sidorenko, A.Yu., Thermodynamic modeling of the liquidus surface of the phase diagram of the Cu2O–Al2O3–ZrO2 system, Vestn. Ural. Gos. Univ. Ser. Metall., 2015, no. 4, pp. 15–21.

    Google Scholar 

  14. Khimicheskaya entsiklopediya. V 5 tomakh tom 2 (Chemical Encyclopedia. 5 vols, vol. 2), Knunyants, I.L., Ed., Moscow: Sov. Entsiklopediya, 1990.

  15. Kubaschewski, O. and Alcock, C.B., Metallurgical Thermochemistry, Oxford: Pergamon, 1979.

    Google Scholar 

  16. Fiziko-khimicheskie svoistva okislov: Spravochnik (Physico-Chemical Properties of Oxides: Reference Book), Samsonov, G.V., Ed., Moscow: Metallurgiya, 1969.

  17. Misra, S.K. and Chaklader, A.C.D., The system copper oxide–alumina, J. Amer. Cer. Soc., 1963, no. 46 (10), p. 509.

    Google Scholar 

  18. Amrute, A.P., Lodziana, Z., Mondelli, C., Krumeich, F., and Perez-Ramirez, J., Solid-state chemistry of cuprous delafossites: synthesis and stability aspects, Chem. Mater., 2013, no. 25, pp. 4423–4435.

    Article  Google Scholar 

  19. Mudenda, S., Kale, G.M., and Hara, Y.R.S., Rapid synthesis and electrical transition in p-type delafossite CuAlO2, J. Mater. Chem. C, 2014, no. 2, pp. 9233–9239.

    Article  Google Scholar 

  20. Gadalla, A.M.M. and White, J., The system CuO–Cu2O–Cr2O3 and its bearing on the performance of basic refractories in copper-melting furnaces, Trans. Brit. Ceram. Soc., 1964, no. 63 (10), pp. 535–552.

    Google Scholar 

  21. Ust’yantsev, V.M., Mar’evich, V.P., and Perepelitsyn, V.A., Formation of copper chromite in chromium–magnesite refractories during service in copper-smelting aggregates, Ogneupory, 1971, no. 10, pp. 28–32.

    Google Scholar 

  22. Vlach, K.C., You, Y.-Z., and Chang, Y.A., A thermodynamic study of the Cu–Cr–O system by the EMF method, Thermochim. Acta, 1986, no. 103 (2), pp. 361–370.

    Article  Google Scholar 

  23. Poienar, M., Hardy, V., Kundys, B., Singh, K., Maignan, A., Damay, F., and Martin, Ch., Revisiting the properties of delafossite CuCrO2: a single crystal study, J. Solid State Chem., 2012, no. 185, pp. 56–61.

    Article  Google Scholar 

  24. Slag Atlas, Dusseldorf: Stahleisen, 1995, 2nd ed.

  25. Samoilova, O.V., Mikhailov, G.G., Trofimov, E.A., and Makrovets, L.A., Thermodynamic simulation and an experimental study of the possibility of synthesizing hardened Cu–Zr–O alloys, Russ. Metall. (Metally), 2016, no. 9, pp. 864–868.

    Article  Google Scholar 

  26. Mikhailov, G.G., Makrovets, L.A., and Samoilova, O.V., Thermodynamic description of phase equilibria in the Cu–Al–Zr–O system under the condition of metal melt existence, Vestn. Yuzhn.-Ural. Gos. Univ. Ser. Metall., 2016, no. 3, pp. 11–17.

    Google Scholar 

  27. Linchevskii, B.V., Termodinamika i kinetika vzaimodeistviya gazov s zhidkimi metallami (Thermodynamics and Kinetics of Interaction between Gases and Liquid Metals), Moscow: Metallurgiya, 1986.

    Google Scholar 

  28. Tanahashi, M., Furuta, N., Taniguchi, T., Yamauchi, Ch., and Fujisawa, T., Standard Gibbs free energy of formation of MnO-saturated MnO · Cr2O3 solid solutions at 1873 K, ISIJ Int., 2003, no. 43 (1), pp. 7–13.

    Article  Google Scholar 

  29. Ponweiser, N., Lengauer, Ch.L., and Richter, K.W., Re-investigation of phase equilibria in the system Al–Cu and structural analysis of the high-temperature phase η1-Al1–δCu, Intermetallics, 2011, no. 19, pp. 1737–1746.

    Article  Google Scholar 

  30. Chakrabarti, D.J. and Laughlin, D.E., The Cr–Cu (chromium–copper) system, Bull. Alloy Phase Diagr., 1984, no. 5 (1), pp. 59–68.

    Article  Google Scholar 

  31. Clavaguera-Mora, M.T., Touron, J.L., Rodriguez-Viejo, J., and Clavaguera, N., Thermodynamic description of the Cu–O system, J. Alloys Compd., 2004, no. 377, pp. 8–16.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Samoilova.

Additional information

Original Russian Text © O.V. Samoilova, L.A. Makrovets, G.G. Mikhailov, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgiya, 2017, No. 5, pp. 19–27.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoilova, O.V., Makrovets, L.A. & Mikhailov, G.G. Phase Equilibria in Liquid Metal of the Cu–Al–Cr–O System. Russ. J. Non-ferrous Metals 58, 579–585 (2017). https://doi.org/10.3103/S1067821217060116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821217060116

Keywords

Navigation