Skip to main content
Log in

Properties of bulk metallic glasses

  • Physical Metallurgy and Heat Treatment
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

A relatively small number of revolutionary materials have been discovered in the field of physical metallurgy and metal physics in the last several decades, and bulk metallic glasses are among them. Their strength and hardness are considerably higher and their modulus of normal elasticity is considerably lower than that of crystalline alloys, which leads to large stored elastic strain energy. These materials also have very good corrosion resistance. In this article, we present the properties of bulk metallic glasses, in particular, thermal, mechanical, magnetic, and electrical properties, corrosion resistance, as well as the application fields of these alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glezer, A.M. and Shurygina, N.A., Amorfnonanokristallicheskie splavy (Amorphous-Nanocrystalline Alloys), Moscow: Fizmatlit, 2013.

    Google Scholar 

  2. Louzguine, D.V. and Pol’kin, V.I., Bulk metallic glasses: Fabrication, structure, and structural changes under heating, Russ. J. Non-Ferrous Met., 2016, vol. 57, no. 1, pp. 25–32.

    Google Scholar 

  3. Inoue, A., High strength bulk amorphous alloys with low critical cooling rates, Mater. Trans. JIM, 1995, vol. 36, pp. 866–875.

    Article  Google Scholar 

  4. Johnson, W.L., Bulk glass-forming metallic alloys: science and technology, Mater. Res. Bull., 1999, vol. 24, pp. 42–56.

    Article  Google Scholar 

  5. Abrosimova, G.E., Aronin, A.S., and Zver’kova, I.I., Phase transformations during crystallization of Al–Ni–Re amorphous alloys, Fiz. Met. Metalloved., 2002, vol. 94, pp. 1–6.

    Google Scholar 

  6. Angell, C.A., Formation of glasses from liquids and biopolymers, Science, 1995, vol. 2, pp. 1924–1935.

    Article  Google Scholar 

  7. Debenedetti, P.G. and Stillinger, F.H., Supercooled liquids and the glass transition, Nature, 2001, vol. 410, pp. 259–267.

    Article  Google Scholar 

  8. Lysenko, A.V., Lyakhov, S.A., Khonik, V.A., and Yazvitsii, M.Yu., Shear viscosity of the Pd40Cu40P20 metallic glass under conditions of isochronous heating below the glass transition temperature, Phys. Sol. State, 2009, vol. 51, no. 2, p. 221.

    Article  Google Scholar 

  9. Aljerf, M., Georgarakisa, K., and Yavari, A.R., Shaping of metallic glasses by stress-annealing without thermal embrittlement, Acta Mater., 2011, vol. 59, pp. 3817–3824.

    Article  Google Scholar 

  10. Harms, U., Shen, T.D., and Schwarz, R.B., Thermal conductivity of Pd40Ni40–xCuxP20 metallic glasses, Scr. Mater., 2002, vol. 47, pp. 411–414.

    Article  Google Scholar 

  11. Yamasaki, M., Kagao, S., and Kawamura, Y., Thermal diffusivity and conductivity of Zr55Al10Ni5Cu30 bulk metallic glass, Scr. Mater., 2005, vol. 53, pp. 63–67.

    Article  Google Scholar 

  12. Yamasaki, M., Kagao, S., Kawamura, Y., and Yoshimura, K., Thermal diffusivity and conductivity of supercooled liquid in Zr41Ti14Cu12Ni10Be23 metallic glass, Appl. Phys. Lett., 2004, vol. 84, pp. 4653–4655.

    Article  Google Scholar 

  13. Kimura, H.M., Inoue, A., Nishiyama, N., Sasamori, K., Haruyama, O., and Masumoto, T., Thermal, mechanical, and physical properties of supercooled liquid in Pd–Cu–Ni–P amorphous alloy, Sci. Rep., 1997, vol. 43, pp. 101–106.

    Google Scholar 

  14. Busch, R., The thermophysical properties of bulk metallic glass-forming liquids, JOM, 2000, vol. 52, pp. 39–42.

    Article  Google Scholar 

  15. Louzguine-Luzgin, D.V., Seki, I., Yamamoto, T., Kawaji, H., Suryanarayana, C., and Inoue, A., Double-stage glass transition in a metallic glass, Physical Review B, 2010, vol. 81, N: 14, no. 144202.

    Article  Google Scholar 

  16. Abrosimova, G.E., Aronin, A.S., Asadchikov, V.E., Serebryakov, A.V., Evolution of the structure of Co–Fe–Si–B and Fe–B amorphous alloys upon heating below the crystallization temperature], Fiz. Met. Metalloved., 1986, no. 3, pp. 496–502.

    Google Scholar 

  17. Kaloshkin, S.D. and Tomilin, I.A., Thermodynamic description of the transformations of amorphous solid solutions in the iron–silicon–boron system, Zh. Fiz. Khim., 1996, no. 1, pp. 27–32.

    Google Scholar 

  18. Yavari, A.R., Moulec, A.Le., Inoue, A., Nishiyama, N., Lupu, N., Matsubara, E., Botta, W.J., Vaughan, G., Michiel, M.Di., and Kvick, A., Excess free volume in metallic glasses measured by x-ray diffraction, Acta Mater., 2005, vol. 53, pp. 1611–1619.

    Article  Google Scholar 

  19. Zollmer, V., Ratzke, K., Faupel, F., Rehmet, A., and Geyer, U., Evidence of diffusion via collective hopping in metallic supercooled liquids and glasses, Phys. Rev. B, 2002, vol. 65, no. 220201.

  20. Knorr, M.P., Freitag, M.K., and Mehrer, H.J., Self-diffusion in the amorphous and supercooled liquid state of the bulk metallic glass Zr46.75Ti8.25Cu7.5Ni10Be27.5, J. Non-Cryst. Solids, 1999, vol. 250–3, pp. 669–673.

    Article  Google Scholar 

  21. Egami, T., Nano-glass mechanism of bulk metallic glass formation, Mater. Trans, 2002, vol. 43, pp. 510–517.

    Article  Google Scholar 

  22. Pozdnyakov, V.A. and Glezer, A.M., Structural mechanisms of fracture in amorphous metallic alloys, Doklady Physics, 2002, vol. 47, no. 4, pp. 852–855.

    Article  Google Scholar 

  23. He, Q., Cheng, Y.Q., Ma, E., and Xu, J., Locating bulk metallic glasses with high fracture toughness: chemical effects and composition optimization, Acta Mater., 2011, vol. 59, pp. 202–215.

    Article  Google Scholar 

  24. Demetriou, M.D., Launey, M.E., Garrett, G., Schramm, P.J., Hofmann, D.C., Johnson, W.L., and Ritchie, R.O., A damage tolerant glass, Nature Mater., 2011, vol. 10, pp. 123–128.

    Article  Google Scholar 

  25. Ke, H.B., Wen, P., Peng, H.L., Wang, W.H., and Greer, A.L., Homogeneous deformation of metallic glass at room temperature reveals large dilatation, Scr. Mater., 2011, vol. 64, pp. 966–969.

    Article  Google Scholar 

  26. Abrosimova, G.E., Aronin, A.S., Afonikova, N.S., and Kobelev, N.P., Influence of deformation on the structural transformation of the Pd40Ni40P20 amorphous phase, Phys. Solid State, 2010, vol. 52, pp. 1892–1898.

    Article  Google Scholar 

  27. Louzguine-Luzgin, D.V., Ketov, S.V., Wang, Z., Miyama, M.J., Tsarkov, A.A., and Churyumov, A.Yu., Plastic deformation studies of Zr-based bulk metallic glassy samples with a low aspect ratio, Mater. Sci. Eng. A, 2014, vol. 616, pp. 288–296.

    Article  Google Scholar 

  28. Conner, R.D., Li, Y., Nix, W.D., and Johnson, W.L., Shear band spacing under bending of Zr-based metallic glass plates, Acta Mater., 2004, vol. 52, pp. 2429–2434.

    Article  Google Scholar 

  29. Donovan, P.E. and Stobbs, W.M., The structure of shear bands in metallic glasses, Acta Metall., 1981, vol. 29, pp. 1419–1436.

    Article  Google Scholar 

  30. Spaepen, F., A microscopic mechanism for steady state inhomogeneous flow in metallic glasses, Acta Metall., 1977, vol. 25, pp. 407–415.

    Article  Google Scholar 

  31. Argon, A., Plastic deformation in metallic glasses, Acta Metall., 1979, vol. 27, pp. 47–58.

    Article  Google Scholar 

  32. Louzguine-Luzgin, D.V., Zadorozhnyy, V.Yu., Chen, N., and Ketov, S.V., Evidence of the existence of two deformation stages in bulk metallic glasses, J. Non-Cryst. Solids, 2014, vol. 396–3, pp. 20–24.

    Article  Google Scholar 

  33. Perepezko, J.H., Imhoff, S.D., Chen, M.W., Wang, J.Q., and Gonzalez, S., Nucleation of shear bands in amorphous alloys, Proc. Natl. Acad. Sci. USA, 2014, vol. 111, pp. 3938–3942.

    Article  Google Scholar 

  34. Zhang, Q.S., Zhang, W., Xie, G.Q., Louzguine-Luzgin, D.V., and Inoue, A., Stable flowing of localized shear bands in soft bulk metallic glasses, Acta Mater., 2010, vol. 58, pp. 904–909.

    Article  Google Scholar 

  35. Schuh, C.A., Lund, A.C., and Nieh, T.G., New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling, Acta, Mater., 2004, vol. 52, pp. 5879–5891.

    Article  Google Scholar 

  36. Xi, K.K., Zhao, D.Q., Pan, M.X., Wang, W.H., Wu, Y., and Lewandowski, J.J., Fracture of brittle metallic glasses: brittleness or plasticity, Phys. Rev. Lett., 2005, vol. 94, no. 125510.

  37. Lewandowski, J.J. and Greer, A.L., Temperature rise at shear bands in metallic glasses, Nat. Mater., 2006, vol. 5, pp. 15–18.

    Article  Google Scholar 

  38. Cheng, Y.Q., Han, Z., Li, Y., and Ma, E., Cold versus hot shear banding in bulk metallic glass, Phys. Rev. B, 2009, vol. 80, no. 134115.

  39. Ketov, S.V. and Louzguine-Luzgin, D.V., Localized shear deformation and softening of bulk metallic glass: stress or temperature driven, Sci. Reports, 2013, vol. 3, pp. 1–6.

    Google Scholar 

  40. Xi, K.K., Zhao, D.Q., Pan, M.X., Wang, W.H., Wu, Y., and Lewandowski, J.J., Fracture of brittle metallic glasses: brittleness or plasticity, Phys. Rev. Lett., 2005, vol. 94, pp. 1–4.

    Article  Google Scholar 

  41. Conner, R.D., Johnson, W.L., Paton, N.E., and Nix, W.D., Shear bands and cracking of metallic glass plates in bending, J. Appl. Phys., 2003, vol. 94, pp. 904–911.

    Article  Google Scholar 

  42. Schuh, C.A., Hufnagel, T.C., and Ramamurty, U., Mechanical behavior of amorphous alloys, Acta Mater., 2007, vol. 55, pp. 4067–4109.

    Article  Google Scholar 

  43. Yang, B., Morrison, M.L., Liaw, PP.K., Buchanan, R.A., Wang, G., Liu, C.T., and Denda, M., Dynamic evolution of nanoscale shear bands in a bulk-metallic glass, Appl. Phys. Lett., 2005, vol. 86, pp. 4–7.

    Google Scholar 

  44. Chen, N., Louzguine-Luzgin, D.V., Xie, G.Q., and Inoue, A., Nanoscale wavy fracture surface of a Pdbased bulk metallic glass, Appl. Phys. Lett., 2009, vol. 94, p. 131906.

    Article  Google Scholar 

  45. Louzguine-Luzgin, D.V., Chen, N., Zadorozhnyy, V.Yu., Seki, I., and Inoue, A., Pd40Ni40Si5P15 bulk metallic glass properties variation as a function of sample thickness, Intermetallics, 2013, vol. 33, pp. 67–72.

    Article  Google Scholar 

  46. Louzguine-Luzgin, D.V., Saito, T., Saida, J., and Inoue, A., Thermal conductivity of metallic glassy alloys and its relationship to the glass forming ability and the observed cooling rates, Journal of Materials Research, 2008, vol. 23, no. 8, pp. 2238–2287.

    Article  Google Scholar 

  47. Glezer, A.M. and Betekhtin, V.I., Free volume and microfracture mechanisms of amorphous alloys, Fiz. Tverd. Tela, 1996, vol. 38, no. 6, pp. 1784–1790.

    Google Scholar 

  48. Liu, F.X., Liaw, P.K., Wang, G.Y., Chiang, C.L., Smith, D.A., Rack, P.D., Chu, J.P., and Buchanan, R.A., Specimen-geometry effects on mechanical behavior of metallic glasses, Intermetallics, 2006, vol. 14, pp. 1014–1018.

    Article  Google Scholar 

  49. Sunny, G., Lewandowski, J., and Prakash, V., Effects of annealing and specimen geometry on dynamic compression of a Zr-based bulk metallic glass, J. Mater. Res., 2007, vol. 22, pp. 389–401.

    Article  Google Scholar 

  50. Betekhtin, V.I., Glezer, A.M., Kadomtsev, A.G., and Kipyatkova, A.Yu., Excess free volume and mechanical properties of amorphous alloys, Fiz. Tverd. Tela, 1998, vol. 40, pp. 1–5.

    Google Scholar 

  51. Uchic, M.D., Dimiduk, D.M., Florando, N., and Nix, W.D., Sample dimensions influence strength and crystal plasticity, Science, 2004, vol. 305, pp. 986–989.

    Article  Google Scholar 

  52. Gu, L., Zhang, Q.S., Pan, D., Chen, N., Louzguine-Luzgin, D.V., Yao, K.-F., Wang, W.H., and Ikuhara, Y., Direct in situ observation of metallic glass deformation by real-time nano-scale indentation, Scientific Reports, 2015, vol. 5, no. 9122.

  53. Gilbert, C.J., Ritchie, R.O., and Johnson, W.L., Fracture toughness and fatigue-crack propagation in a Zr?Ti–Ni–Cu–Be bulk metallic glass, Appl. Phys. Lett., 1997, vol. 71, pp. 476–478.

    Article  Google Scholar 

  54. Lowhaphandu, P. and Lewandowski, J.J., Fracture toughness and notched toughness of bulk amorphous alloy: Zr–Ti–Ni–Cu–Be, Scr. Mater, 1998, vol. 38, pp. 1811–1817.

    Article  Google Scholar 

  55. Zhang, Z.F., Eckert, J., and Schultz, L., Fatigue and fracture behavior of bulk metallic glass, Metall. Mater. Trans. A, 2004, vol. 35, pp. 3489–3498.

    Article  Google Scholar 

  56. Wang, G.Y., Liaw, P.K., Peter, W.H., Yang, B., Yokoyama, Y., Benson, M.L., Green, B.A., and Kirkham, M., White, S.A., Saleh, T.A., McDaniels, R.L, Steward, R.V., Buchanan, R.A., Liu, C.T., and Brook, C.R., Fatigue behavior of bulk-metallic glasses, Intermetallics, 2004, vol. 12, pp. 885–892.

    Article  Google Scholar 

  57. Dalla Torre, F.H., Dubach, A., Nelson, A., and Loffler, J.F., Temperature, strain and strain rate dependence of serrated flow in bulk metallic glasses, Mater. Trans, 2007, vol. 48, pp. 1774–1780.

    Article  Google Scholar 

  58. Gonzalez, S., Xie, G.Q., Louzguine-Luzgin, D.V., Perepezko, J.H., and Inoue, A., Deformation and strain rate sensitivity of a Zr–Cu–Fe–Al metallic glass, Mater. Sci. Eng. A, 2011, vol. 528, pp. 3506–3512.

    Article  Google Scholar 

  59. Heggen, M., Spaepen, F., and Feuerbacher, M., Creation and annihilation of free volume during homogeneous flow of a metallic glass, J. Appl. Phys., 2005, vol. 97, p. 033506.

    Article  Google Scholar 

  60. Rene, L., Rodrigues, B.P., and Wondraczek, L., Strain-rate sensitivity of glasses, J. Non-Cryst. Solids, 2014, vol. 404, pp. 124–134.

    Article  Google Scholar 

  61. Dalla Torre, F.H., Dubach, A., Siegrist, M., and Löffler, J.F., Negative strain rate sensitivity in bulk metallic glass and its similarities with dynamic strain aging effect during deformation, Appl. Phys. Lett., 2006, vol. 89, No. 091918.

  62. Trichy, G.R., Scattergood, R.O., Koch, C.C., and Murty, K.L., Ball indentation tests for a Zr-based bulk metallic glass, Scr. Mater., 2005, vol. 53, pp. 1461–1465.

    Article  Google Scholar 

  63. Saida, J., Setyawan, A.D., Kato, H., Matsushita, M., and Inoue, A., Improvement of plasticity in Pd containing Zr–Al–Ni–Cu bulk metallic glass by deformation-induced nano structure change, Mater. Trans., 2008, vol. 49, pp. 2732–2736.

    Article  Google Scholar 

  64. Louzguine-Luzgin, D.V., Yavari, A.R., Xie, G., Madge, S., Li, S., Saida, J., Greer, A.L., and Inoue, A., Tensile deformation behaviour of Zr-based glassy alloys, Philos. Mag. Lett., 2010, vol. 90, no. 2, pp. 139–148.

    Article  Google Scholar 

  65. Yavari, A.R., Lewandowski, J.J., and Eckert, J., Mechanical properties of bulk metallic glasses, MRS Bull., 2007, vol. 32, pp. 635–638.

    Article  Google Scholar 

  66. Guo, H., Yan, P.F., Wang, Y.B., Tan, J., Zhang, Z.F., Sui, M.L., and Ma, E., Tensile ductility and necking of metallic glass, Nature Mater., 2007, vol. 6, pp. 735–738.

    Article  Google Scholar 

  67. Volkert, C.A., Donohue, A., and Spaepen, F., Effect of sample size on deformation in amorphous metals, J. Appl. Phys., 2008, vol. 15, pp. 1–6.

    Google Scholar 

  68. Lewandowski, J.J. and Greer, A.L., Temperature rise at shear bands in metallic glasses, Nat. Mater., 2006, vol. 5, pp. 15–18.

    Article  Google Scholar 

  69. Zhang, Y., Stelmashenko, N.A., Barber, Z.H., Wang, W.H., Lewandowski, J.J., and Greer, A.L., Local temperature rises during mechanical testing of metallic glasses, J. Mater. Res., 2007, vol. 22, pp. 419–427.

    Article  Google Scholar 

  70. Georgarakis, K., Aljerf, M., Li, Y., Lemoulec, A., Charlot, F., Yavari, A.R., Chornokhvostenko, K., Tabachnikova, E., Evangelakis, G.A., Miracle, D.B., Greer, A.L., and Zhang, T., Shear band melting and serrated flow in metallic glasses, Appl. Phys. Lett., 2008, vol. 93.

  71. Lewandowski, J.J., Shazly, M., and Shamimi Nouri, A., Intrinsic and extrinsic toughness of bulk metallic glasses, Scr. Mater., 2007, vol. 54, pp. 337–341.

    Article  Google Scholar 

  72. Khonik, S.V., Granato, A.V., Joncich, D.M., Pompe, A., and Khonik, V.A., Evidence of distributed interstitialcy-like relaxation of the shear modulus due to structural relaxation of metallic glasses, Phys. Rev. Lett., 2006, vol. 100, no. 065501.

  73. Lind, M.L., Duan, G., and Johnson, W.L., Isoconfigurational elastic constants and liquid fragility of a bulk metallic glass forming alloy, Phys. Rev. Lett., 2006, vol. 97, no. 015501.

  74. Lewandowski, J.J., Effects of annealing and changes in stress state on fracture toughness of bulk metallic glass, Mater. Trans. JIM, 2001, vol. 42, pp. 633–637.

    Article  Google Scholar 

  75. Johnson, W.L. and Samwer, K.A., Universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence, Phys. Rev. Lett., 2005, vol. 95, no. 195501.

  76. Demetriou, M.D., Harmon, J.S., Tao, M., Duan, G., Samwer, K., and Johnson, W.L., Cooperative shear model for the rheology of glass-forming metallic liquids, Phys. Rev. Lett., 2006, vol. 97, no. 065502.

  77. Cheng, Y.Q., Cao, A.J., and Ma, E., Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: the roles of atomic configuration and alloy composition, Acta Mater., 2009, vol. 57, pp. 3253–3267.

    Article  Google Scholar 

  78. Lewandowski, J.J., Wang, W.H., and Greer, A.L., Intrinsic plasticity or brittleness of metallic glasses, Philos. Mag. Lett., 2005, vol. 85, pp. 77–87.

    Article  Google Scholar 

  79. Caron, A., Wunderlich, R., Louzguine-Luzgin, D.V., Xie, G., Inoue, A., and Fecht, H.-F., Influence of minor aluminum concentration changes in zirconiumbased bulk metallic glasses on the elastic, anelastic, and plastic properties, Acta Materialia, 2010, vol. 58, no. 6, pp. 2004–2013.

    Article  Google Scholar 

  80. Ketov, S.V., Sun, Y.H., Nachum, S., Lu, Z., Checchi, A., Beraldin, A.R., Bai, H.Y., Wang, W.H., Louzguine-Luzgin, D.V., Carpenter, M.A., and Greer, A.L., Rejuvenation of metallic glasses by non-affine thermal strain, Nature, 2015, vol. 524, pp. 200–203.

    Article  Google Scholar 

  81. Ding, J., Patinet, S., Falk, M.L., Cheng, Y., and Ma, E., Soft spots and their structural signature in a metallic glass, Proc. Natl. Acad. Sci. USA., 2014, vol. 111, pp. 14052–14056.

    Article  Google Scholar 

  82. Vinogradov, A., Lazarev, A., Louzguine-Luzgin, D.V., Yokoyama, Y., Li, S., Yavari, A.R., and Inoue, A., Propagation of shear bands in metallic glasses and transition from serrated to non-serrated plastic flow at low temperatures, Acta Mater., 2010, vol. 58, no. 20, pp. 6736–6743.

    Article  Google Scholar 

  83. Yu, H.B., Wang, W.H., Zhang, J.L., Hong Shek C.H., and Bai, Y., Statistic analysis of the mechanical behavior of bulk metallic glasses, Adv. Eng. Mater., 2009, vol. 11, pp. 370–375.

    Article  Google Scholar 

  84. Wright, W.J., Schwarz, R.B., and Nix, W.D., Localized heating during serrated plastic flow in bulk metallic glasses, Mater. Sci. Eng. A, 2001, vol. 319–3, pp. 229–232.

    Article  Google Scholar 

  85. Yokoyama, Y., Fujita, K., Yavari, A.R., and Inoue, A., Malleable hypoeutectic Zr–Ni–Cu–Al bulk glassy alloys with tensile plastic elongation at room temperature, Philos. Mag. Lett., 2009, vol. 89, pp. 322–334.

    Article  Google Scholar 

  86. Yokoyama, Y., Tokunaga, H., Yavari, A.R., Kawamata, T., Yamasaki, T., Fujita, K., Sugiyama, K., Liaw, P.K., and Inoue, A., Tough hypoeutectic Zrbased bulk metallic glasses, Metall. Mater. Trans. A, 2011, vol. 42, pp. 1468–1475.

    Article  Google Scholar 

  87. Inoue, A., Wang, Z., Louzguine-Luzgin, D.V., Han, Y., Kong, F.L., Shalaan, E., and Al-Marzouki, F., Effect of high-order multicomponent on formation and properties of Zr-based bulk glassy alloys, J. Alloys Comp., 2015, vol. 638, pp. 197–203.

    Article  Google Scholar 

  88. Chen, N., Louzguine-Luzgin, D.V., Xie, G.Q., Wada, T., and Inoue, A., Influence of minor Si addition on the glass-forming ability and mechanical properties of Pd40Ni40P20 alloy, Acta Mater., 2009, vol. 57, pp. 2775–2780.

    Article  Google Scholar 

  89. Brothers, A.H. and Dunand, D.C., Plasticity and damage in cellular amorphous metals, Acta Mater., 2005, vol. 53, pp. 4427–4440.

    Article  Google Scholar 

  90. Inoue, A., Wada, T., and Louzguine-Luzgin, D.V., Improved mechanical properties of bulk glassy alloys containing spherical pores, Mater. Sci. Eng. A, 2007, vol. 471, pp. 144–150.

    Article  Google Scholar 

  91. Oak, J.J., Louzguine-Luzgin, D.V., and Inoue, A., Investigation of glass-forming ability, deformation and corrosion behavior of Ni-free Ti-based BMG alloys designed for application as dental implants, Mater. Sci. Eng. C, 2009, vol. 29, pp. 322–327.

    Google Scholar 

  92. Glezer, A.M., Zaichenko, S.G., and Plotnikova, M.R., Nature of nanocrystallization in shear bands created by megaplastic deformation in amorphous alloys, Bull. RAS. Physics, 2012, vol. 76, pp. 54–60.

    Google Scholar 

  93. Inoue, A., Zhang, T., Chen, M.W., Sakurai, T., Saida, J., and Matsushita, M., Ductile quasicrystalline alloys, Appl. Phys. Lett., 2000, vol. 76, pp. 967–969.

    Article  Google Scholar 

  94. Louzguine-Luzgin, D.V., Vinogradov, A., Xie, G., Li, S., Lazarev, A., Hashimoto, S., and Inoue, A., High-strength and ductile glassy-crystal Ni–Cu–Zr–Ti composite exhibiting stress-induced martensitic transformation, Philos. Mag. Lett., 2009, vol. 89, pp. 2887–2901.

    Article  Google Scholar 

  95. Churyumov, A.Yu., Bazlov, A.I., Solonin, A.N., Zadorozhnyi, V.Yu., Xie, G.Q., Li, S., and Louzguine-Luzgin, D.V., Structure and mechanical properties of Ni–Cu–Zr–Ti composite materials with amorphous phase, Phys. Met. Metallograph., 2013, vol. 114, pp. 773–778.

    Article  Google Scholar 

  96. Tsarkov, A.A., Churyumov, A.Y., Zadorozhnyy, V.Y., and Louzguine-Luzgin, D.V., Highstrength and ductile (Ti–Ni)–(Cu–Zr) crystalline/amorphous composite materials with superelasticity and TRIP effect, J. Alloys Comp., 2016, vol. 658, pp. 402–407.

    Article  Google Scholar 

  97. Wu, Y., Xiao, Y., Chen, G., Liu, C.T., and Lu, Z., Bulk metallic glass composites with transformationmediated work-hardening and ductility, Adv. Mater., 2010, vol. 22, pp. 2270–2273.

    Google Scholar 

  98. Hofmann, D.C., Shape memory bulk metallic glass composites, Science, 2010, vol. 329, pp. 1294–1295.

    Article  Google Scholar 

  99. Pauly, S., Gorantla, S., Wang, G., Kuhn, U., and Eckert, J., Transformation-mediated ductility in CuZrbased bulk metallic glasses, Nat. Mater, 2010, vol. 9, pp. 473–477.

    Article  Google Scholar 

  100. Hofmann, D.C., Suh, J.Y., Wiest, A., Duan, G., Lind, M.L., Demetriou, M.D., and Johnson, W.L., Designing metallic glass matrix composites with high toughness and tensile ductility, Nature, 2008, vol. 451, pp. 1085–1090.

    Article  Google Scholar 

  101. Louzguine-Luzgin, D.V., Yokoyama, Y., Xie, G., Abe, N., and Inoue, A., Transmission electron microscopy investigation of the structure of a welded Zr50Cu30Ni10Al10 glassy alloy sample, Philos. Mag. Lett., 2007, vol. 87, pp. 549–554.

    Article  Google Scholar 

  102. Kawamura, Y., Inoue, A., and Masumoto, T., Superplastic deformation of Zr65Al10Ni10Cu15 metallic glass, Scr. Mater., 1997, vol. 37, pp. 431–436.

    Article  Google Scholar 

  103. Chen, N., Yang, H.A., Caron, A., Chen, P.C., Lin, Y.C., Louzguine-Luzgin, D.V., Yao, K.F., Esashi, M., and Inoue, A., Glass-forming ability and thermoplastic formability of a Pd40Ni40Si4P16 glassy alloy, J. Mater. Sci., 2011, vol. 46, no. 7, pp. 2091–2096.

    Article  Google Scholar 

  104. Pang, S., Zhang, T., Asami, K., and Inoue, A., Bulk glassy Ni(Co–)Nb–Ti–Zr alloys with high corrosion resistance and high strength, Mater. Sci. Eng. A, 2004, vol. 375, pp. 368–371.

    Article  Google Scholar 

  105. Oak, J.J., Louzguine-Luzgin, D.V., and Inoue, A., Investigation of glass-forming ability, deformation and corrosion behavior of Ni-free Ti-based BMG alloys designed for application as dental implants, Mater. Sci. Eng. C, 2009, vol. 29, pp. 322–327.

    Google Scholar 

  106. Zaichenko, S.G., Perov, N.S., and Glezer, A.M., Low-temperature thermo-cycling of FINEMET and metglas amorphous alloys: last achievements in theory and experiments, J. ASTM Int. Amer. Soc. Test. Mater., 2010, vol. 7, no. 102479.

  107. Makino, A., Kubota, T., Chang, C., Makabe, M., and Inoue, A., Fe-metalloids bulk glassy alloys with high Fe content and high glass-forming ability, J. Mater. Res., 2008, vol. 23, p. 1339.

    Article  Google Scholar 

  108. Shen, B. and Inoue, A., Bulk glassy Fe–Ga–P–C–B–Si alloys with high glass-forming ability, high saturation magnetization and good soft magnetic properties, Mater. Trans., 2002, vol. 43, pp. 1235–1239.

    Google Scholar 

  109. Inoue, A., Shen, B., Koshiba, H., Kato, H., and Yavari, A.R., Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties, Nature Mater., 2003, vol. 2, pp. 661–663.

    Article  Google Scholar 

  110. Makino, A., Inoue, A., and Mizushima, T., Soft magnetic properties of Fe-based bulk amorphous alloys, Mater. Trans., 2000, vol. 41, pp. 1471–1477.

    Article  Google Scholar 

  111. Song, D.S., Kim, J.H., Fleury, E., Kim, W.T., and Kim, D.H., Synthesis of ferromagnetic Fe-based bulk glassy alloys in the Fe–Nb–B–Y system, J. Alloys Compd., 2005, vol. 389, pp. 159–164.

    Article  Google Scholar 

  112. Makino, A., Kubota, T., Chang, C.T., Makabe, M., and Inoue, A., FeSiBP bulk metallic glasses with high magnetization and excellent magnetic softness, J. Magn. Magn. Mater., 2008, vol. 320, pp. 2499–2503.

    Article  Google Scholar 

  113. Shen, B.L., Chang, C.T., and Inoue, A., Formation, ductile deformation behavior and soft-magnetic properties of (Fe,Co,Ni)–B–Si–Nb bulk glassy alloys, Intermetallics, 2007, vol. 15, pp. 9–16.

    Google Scholar 

  114. Ashby, M.F. and Greer, A.L., Metallic glasses as structural materials, Scr. Mater., 2006, vol. 54, pp. 321–326.

    Article  Google Scholar 

  115. Nishiyama, N., Amiya, K., and Inoue, A., Recent progress of bulk metallic glasses for strain-sensing devices, Mater. Sci. Eng. A, 2007, vol. 79, pp. 449–451.

    Google Scholar 

  116. Ketov, S.V., Inoue, A., Kato, H., and Louzguine-Luzgin, D.V., Viscous flow of Cu55Zr30Ti10Co5 bulk metallic glass in glass-transition and semi-solid regions, Scr. Mater., 2013, vol. 68, pp. 219–222.

    Article  Google Scholar 

  117. Nishiyama, N., Amiya, K., and Inoue, A., Resent progress of bulk metallic glasses for strain-sending products, J. Non-Cryst. Solids, 2007, vol. 353, pp. 3615–3621.

    Article  Google Scholar 

  118. Chen, N., Shi, X., Witte, R., Nakayama, K.S., Ohmura, K., Wu, H.K., Takeuchi, A., Hahn, H., Esashi, M., Gleiter, H., Inoue, A., and Louzguine, D.V., A novel Ti-based nanoglass composite with submicron-nanometer-sized hierarchical structures to modulate osteoblast behaviors, J. Mater. Chem. B, 2013, vol. 1, pp. 2568–2574.

    Article  Google Scholar 

  119. Zberg, B., Uggowitzer, P.J., and Loffler, J.F., MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants, Nature Mater., 2009, vol. 8, pp. 887–891.

    Article  Google Scholar 

  120. Yu, H.J., Wang, J.Q., Shi, X.T., Louzguine-Luzgin, D.V., Wu, H.K., and Perepezko, J.H., Ductile biodegradable Mg-based metallic glasses with excellent biocompatibility, Adv. Funct. Mater., 2013, vol. 23, pp. 4793–4800.

    Google Scholar 

  121. Petrzhik, M.I., Vakaev, P.V., Chueva, T.R., Sviridova, T.A., Molokanov, V.V., Kovneristy, Yu.K., and Levashov, E.A., From bulk metallic glasses to amorphous metallic coatings, J. Metast. Nanocryst. Mater., 2005, vol. 24–3, pp. 101–104.

    Article  Google Scholar 

  122. Hara, S., Hatakeyama, N., Itoh, N., Kimura, H.M., and Inoue, A., Hydrogen permeation through amorphous- Zr36–xHfxNi64-alloy membranes, J. Membr. Sci., 2003, vol. 211, pp. 149–156.

    Article  Google Scholar 

  123. Yamaura, S., Shimpo, Y., Okouchi, H., Nishida, M., Kajita, O., Kimura, H.M., and Inoue, A., Hydrogen permeation characteristics of melt-spun Ni–Nb–Zr amorphous alloy membranes, Mater. Trans., 2003, vol. 44, pp. 1885–1890.

    Article  Google Scholar 

  124. Wang, J.-Q., Liu, Y.-H., Chen, M.-W., Louzguine-Luzgin, D.V., Inoue, A., and Perepezko, J.H., Excellent capability in degrading azo dyes by MgZn-based metallic glass powders, Sci. Rep., 2012, vol. 2, p. 418.

    Google Scholar 

  125. Wang, J.-Q., Liu, Y.-H., Chen, M.-W., Xie, G.-Q., Louzguine-Luzgin, D.V., Inoue, A., and Perepezko, J.H., Rapid degradation of azo dye by Fe-based metallic glass powder, Adv. Funct. Mater., 2012, vol. 22, pp. 2567–2570.

    Article  Google Scholar 

  126. Trifonov, A.S., Lubenchenko, A.V., Polkin, V.I., Pavolotsky, A.B., Ketov, S.V., and Louzguine-Luzgin, D.V., Difference in charge transport properties of Ni–Nb thin films with native and artificial oxide, J. Appl. Phys., 2015, vol. 117, p. 125704.

    Article  Google Scholar 

  127. Louzguine-Luzgin, D.V., Ketov, S.V., Orava, J., and Mizukami, S., Optically transparent magnetic and electrically conductive Fe–Cr–Zr ultra-thin films, Phys. Status Sol. A, 2014, vol. 211, no. 5, pp. 999–1004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Louzguine-Luzgin.

Additional information

Original Russian Text © D.V. Louzguine-Luzgin, V.I. Polkin, 2016, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgiya, 2016, No. 6, pp. 71–84.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louzguine-Luzgin, D.V., Polkin, V.I. Properties of bulk metallic glasses. Russ. J. Non-ferrous Metals 58, 80–92 (2017). https://doi.org/10.3103/S1067821217010084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821217010084

Keywords

Navigation