Skip to main content
Log in

Modeling of electric and thermal fields in an electrolyzer with liquid-metal electrodes

  • Metallurgy of Nonferrous Metals
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The influence of the molten electrolyte composition and geometric configuration of the electrolyzer with liquid-metal lead electrodes on the spatial distribution of dc and temperature in an apparatus of the “crucible-in-crucible” type, which is considered a prototype of the device to process spent nuclear fuel, is studied by mathematical modeling. It is shown that the calculated model parameters are in good agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sakamura, Y., Shirai, O., Iwai, T., and Suzuki, Y., Distribution behavior of plutonium and americium in LiCl–KCl eutectic. Liquid cadmium systems, J. Alloys Compd., 2001, vol. 321, pp. 76–83.

    Article  Google Scholar 

  2. Hebditch, D., Hanson, B., Lewin, R., Beetham, S., Jenkins, J., and Sims, H., Electrorefining of uranium and electro partitioning of U, Pu, Am, Nd and Ce, in: Proc. of Global 2003, New Orleans, LA: pp. 1574–1581, 2003.

    Google Scholar 

  3. Satoh, T., Iwai, T., and Arai, Y., Electrolysis of burn up-simulated uranium nitride fuels in LiCl–KCl eutectic melts, J. Nucl. Sci. Technol., 2009, vol. 46, pp. 557–563.

    Article  Google Scholar 

  4. Song, K., Lee, H., Hur, J., Kim, J., Ahn, D., and Cho, Y., Status of pyroprocessing technology development in Korea, Nucl. Eng. Technol., 2010, vol. 42, pp. 131–144.

    Article  Google Scholar 

  5. Koyama, T., Sakamura, Y., Iizuka, M., Kato, T., Murakami, T., and Glatz, J.-P., Development of pyroprocessing fuel cycle technology for closing actinide cycle, Proc. Chem., 2012, vol. 7, pp. 772–778.

    Article  Google Scholar 

  6. Shirai, O., Uozumi, K., Iwai, T., and Arai, Y., Electrode reaction of the U3+/U couple at liquid Cd and Bi electrodes in LiCl–KCl eutectic melts, Anal. Sci., 2001, vol. 17, pp. 1959–1962.

    Article  Google Scholar 

  7. Smolenski, V., Novoselova, A., Osipenko, A., and Kormilitsyn, M., and Luk’yanova Ya. Thermodynamics of separation of uranium from neodymium between the gallium–indium liquid alloy and the LiCl–KCl molten salt phases, Electrochim. Acta, 2014, vol. 133, pp. 354–358.

    Article  Google Scholar 

  8. Smolenski, V., Novoselova, A., Osipenko, A., and Maershin, A., Thermodynamics and separation factor of uranium from lanthanum in liquid eutectic gallium-indium alloy/molten salt system, Electrochim. Acta, 2014, vol. 145, pp. 81–85.

    Article  Google Scholar 

  9. Omel’chuk, A.A., Thin-layered electrolysis in molten electrolytes, Russ. J. Electrochem, 2007, vol. 43, pp. 1007–1015.

    Article  Google Scholar 

  10. Delimarski, Yu.K. and Zarubitski, O.G., Electroliticheskoe rafinirovanie tyazholykh metallov v ionnykh rasplavakh (Electrolytic Refining of Heavy Metals in Ionic Melts), Moscow: Metallurgiya, 1975.

    Google Scholar 

  11. Delimarski, Yu.K., Teoreticheskie osnovy electroliza ionnyh rasplavov (Theoretical Foundations of Electrolysis of Ionic Melts), Moscow: Metallurgiya, 1986.

    Google Scholar 

  12. Omel’chuk, A.A., Electrorefining of heavy nonferrous metals in molten electrolytes, Russ. J. Electrochem., 2010, vol. 46, pp. 680–690.

    Article  Google Scholar 

  13. Efremov, A.N., Khalimullina, Yu.R., Pershin, P.S., Arkhipov, P.A., and Zaikov, Yu.P., Influence of the electrolyte composition on the current distribution in an electrolytic cell with liquid metal electrodes, Russ. Metallurgy (Metally), 2015, no. 2, pp. 115–120.

    Article  Google Scholar 

  14. Ivanov, V.T., Scherbinin, S.A., and Galimov, A.A., Matematicheskoe modelirovanie electroteplomassoperenosa v slozhnykh sistemakh (Mathematical Modeling of Electrical and Heat-and-Mass Transfer in Complex Systems), Ufa: Bashkir. Nauch. Tsentr., Ural Otr. Ross. Akad. Nauk SSSR, 1991.

    Google Scholar 

  15. Bessonov, L.A., Teoreticheskie osnovy electrotehniki. Electromagnitnoe pole (Fundamentals of Electrical Engineering. Electromagnetic Field), Moscow: Vysshaya Shkola, 1978.

    Google Scholar 

  16. Segerlind, L., Primenenie metoda konechnyh elementov (Application of the Finite Element Method), Moscow: Mir, 1979.

    Google Scholar 

  17. Balkevich, V.L., Tehnicheskaya keramika, (Technical Ceramics: Textbook for Technical Higher Schools), Moscow: Stroiizdat, 1984.

    Google Scholar 

  18. ASM Metals Handbook. Vol. 1: Properties and Selection: Irons, Steels, and High-Performance Alloys, OH: ASM, 1990, 10th ed.

  19. Desai, P.D., Chu, T.K., James, H.M., and Ho, C.Y., Electrical resistivity of selected elements, J. Phys. Chem. Ref. Data, 1984, vol. 13, no. 4, pp. 1069–1096.

    Article  Google Scholar 

  20. Shinno, H., Kitajima, M., and Okada, M., Thermal stress analysis of high heat flux materials, J. Nucl. Mater., 1988, vol. 155–3, pp. 290–294.

    Article  Google Scholar 

  21. Giordanengo, B., Benazzi, N., Vinckel, J., Gasser, J.G., and Roubi, L., Thermal conductivity of liquid metals and metallic alloys, J. Non-Cryst. Solids, 2000, vol. 250–252, pp. 377–383.

    Google Scholar 

  22. Gale, W.F. and Totemeier, T.C., Smithells Metals Reference Book, Amsterdam: Elsevier, 1988.

    Google Scholar 

  23. Iida, T. and Guthrie, R.I.L., The Physical Properties of Liquid Metals, Oxford: Clarendon, 1988.

    Google Scholar 

  24. Efremov, A.N., Arkhipov, P.A., and Zaikov, Yu.P., Simulation of the electric field in an electrolytic cell with a liquid metal anode, Russ. Metallurgy (Metally), 2013, no. 2, pp. 96–99.

    Article  Google Scholar 

  25. Levich, V.G., Fiziko-khimicheskaya gidrodinamika (Physicochemical Hydrodynamics), Moscow: Gos. Izd. Fiz.-Mat. Lit., 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Efremov.

Additional information

Original Russian Text © A.N. Efremov, V.A. Khokhlov, S.V. Isupov, Yu.P. Zaykov, 2016, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Tsvetnaya Metallurgiya, 2016, No. 6, pp. 14–20.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efremov, A.N., Khokhlov, V.A., Isupov, S.V. et al. Modeling of electric and thermal fields in an electrolyzer with liquid-metal electrodes. Russ. J. Non-ferrous Metals 58, 30–35 (2017). https://doi.org/10.3103/S1067821217010047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821217010047

Keywords

Navigation