Russian Journal of Non-Ferrous Metals

, Volume 57, Issue 4, pp 316–324 | Cite as

Lead production from recycled paste of lead acid batteries with SiC-Na2CO3

  • Angelica Sánchez M.Email author
  • Victor Hugo Gutiérrez P.
  • Alejandro Cruz R.
  • Ricardo Gerardo Sánchez A.
Metallurgy of Nonferrous Metals


A novel pyrometallurgical route was used to reduce the lead paste to obtain metallic lead with different additions of sodium carbonate at 850°C in a silicon carbide crucible. The process allows to obtain a high recovery of metallic lead in a single step and a slag constituted mainly by lead silicate. Products obtained were characterized by atomic absorption, X-ray powder diffraction and SEM-EDS techniques. A thermodynamic study was carried out with the software FactSage to determinate the compounds formation to the experimental conditions. High amounts of Na2CO3 and SiC promoted the formation of a lead sulfide compound which decreased the lead recovery.


lead paste reduction pyrometallurgical batteries thermodynamic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Daniel, S., Pappis, C., and Voutsinas, T., Res. Conservation Recycling, 2003, vol. 37, pp. 251–281.CrossRefGoogle Scholar
  2. 2.
    Besser, A., Sorokina, V., Sokolov, O., and Paretskii, V., Processing of utilized lead—Acid storage batteries—The basis of lead recycling, Russ. Metall. (Eng. Transl.), 2009, vol. 8, pp. 781–787.Google Scholar
  3. 3.
    Kreush, M., Ponte, M., Ponte, H., Kaminari, N., Marino, C., and Mymrin, V., Res. Conservation Recycling, 2007, vol. 52, pp. 368–380.CrossRefGoogle Scholar
  4. 4.
    Morachevskii, A.G., Thermal decomposition of products of desulfation of active mass of lead-acid batteries, Russ. J. Appl. Chem., 2014, vol. 87, no. 9, pp. 1355–1358.CrossRefGoogle Scholar
  5. 5.
    Morachevskii, A.G., Kal’ko, O.A., and Kuznetzova, Y.S., Behavior of antimony in desulfation of the active paste from lead battery scrap with the use of potassium carbonate or hydroxide, Russ. J. Appl. Chem., 2004. vol. 77, no. 6, pp. 1022–1024.CrossRefGoogle Scholar
  6. 6.
    Olper, I. and Asano, B., Improved technology in secondary lead processing—Engitec lead acid battery recycling system, Proceedings of the International Symposium on Primary and Secondary Lead Processing, Halifax Nova Scotia: Pergamon, 1989, pp. 119–132.CrossRefGoogle Scholar
  7. 7.
    Olper, M. and Maccagni, M., Pb Battery recycling, new frontiers in paste desulphurization and lead production, in The Southern African Institute of Mining and Metallurgy, Lead and Zinc, 2008, pp. 237–246.Google Scholar
  8. 8.
    Prengaman, R.D. and Ellis, T.W., 12th International Battery Material and Recycling Seminar, Fort Lauderdale Fl, 2008.Google Scholar
  9. 9.
    Vest, H., Fundamentals of the recycling of lead-acid batteries, 2002, Infogate. http://wwwgtzde/gate/Google Scholar
  10. 10.
    Ellis, T. and Mirza, A., J. Power Sources, 2010, vol. 195, pp. 4525–4529.CrossRefGoogle Scholar
  11. 11.
    O’Conell, G., Toguri, J., Pickles, C., and Smith, D., The distribution of impurities during the soda ash smelting of battery residue, Proceedings of the International Symposium on Primary and Secondary Lead Processing, Halifax Nova Scotia: Pergamon, 1989, pp. 195–209.CrossRefGoogle Scholar
  12. 12.
    Barbin, N.M., Kasantsev, G.F., Moiseev, G.K., and Vatolin, N.A., Lead recovery from PbO, PbCl2, PbS, PbSO4 and their mixtures in carbonate melts, Inorg. Mater., 2002, vol. 38, no. 12, pp. 1216–1223.CrossRefGoogle Scholar
  13. 13.
    Morachevskii, A.G., Vaisgant, Z.I., Ugolkov, V.L., Khabachev, M.N., Bochagina, E.V., Kal’ko, O.A., and Kuznetsova, Y.S., Reduction in processing of active paste from lead battery scrap, Russ. J. Appl. Chem., 2006, vol. 79, no. 2, pp. 241–249.CrossRefGoogle Scholar
  14. 14.
    Morachevskii, A.G., Physicochemical studies of utilization of lead batteries, Russ. J. Appl. Chem., 2014, vol. 87, no. 3, pp. 241–257.CrossRefGoogle Scholar
  15. 15.
    Lassin, A., Piantone, P., Burnol, A., Bodenan, F., Chateau, L., Lerouge, C., Crouzet, C., Guyonnet, D., and Bailly, L., J. Hazardous Mater. A, 2007, vol. 139, pp. 430–437.CrossRefGoogle Scholar
  16. 16.
    Valdez, H., J. Power Sources, 1997, vol. 67, pp. 219–223.CrossRefGoogle Scholar
  17. 17.
    The Commission for Environmental Cooperation of North America: Practices and Options for an Ecological Handling of Exhausted Lead Acid Batteries at North America, 2007. http://wwwcecorg/Storage/61/ 5352_SLABs-finaldec07_espdf. Cited December, 2010.Google Scholar
  18. 18.
    Bale, C., Pelton A., and Thompson, W., Facility for the Analysis of Chemical Thermodynamics (FACTSage v 6.3), 2012, User’s guide.Google Scholar
  19. 19.
    Sánchez, A., Estudio de la reductión de pastas de baterías de plomo ácidas recicladas, Dissertation ESIQIE-IPN, México D.F., 2013 (in Spanish).Google Scholar
  20. 20.
    Reddy, M., Development of new organic synthetic methods based on transition metal reagents and aromatic radical anions, Ph.D. Thesis, India: University of Hyderabad, 1995.Google Scholar
  21. 21.
    Besser, A.D., Sorokina, V.S., and Paretskii, V.M., Elektrometallurgiya, 2009, vol. 3, pp. 2–9.Google Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • Angelica Sánchez M.
    • 1
    Email author
  • Victor Hugo Gutiérrez P.
    • 2
  • Alejandro Cruz R.
    • 1
  • Ricardo Gerardo Sánchez A.
    • 1
  1. 1.Departamento de Ingeniería MetalúrgicaESIQIE—Instituto Politécnico Nacional. A.PostalMéxico
  2. 2.Ingeniería Metalúrgica, UPIIZ—Instituto Politécnico Nacional. Blvd. del Bote S/NCerro del Gato, Ejido la Escondida, Col. Ciudad AdministrativaZacatecasMéxico

Personalised recommendations