Extraction of vanadium and synthesis of vanadium pentaoxide from Bayer’s sludge

Abstract

Wastes generated from the Bayer’s process serve as valuable resources for aluminum, vanadium, gallium, etc. This work aims to develop a environmentally acceptable and low-cost chemical leaching-cumpurification method for the recovery of vanadium sludge of Indian alumina plant (10–12% V2O5) and synthesize vanadium pentaoxide. The efficiency of leaching was evaluated by various lixiviants like acidified water, H2SO4, soda and NaOH against variation in pulp density and temperature. Maximum extraction (96%) vanadium was achieved using acidified water leaching at above ambient temperature in 1 h with 200 g/L pulp density following diffusion control model. Finally, the vanadium rich leach liquor was purified by steps of adsorption/precipitation etc., to remove with iron and silica to get vanadium pentaoxide. A high purity product of 99% V2O5 was obtained by allowing the adsorption at acidic pH followed by desorption and precipitation at 90°C.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Habashi, F., Metall., 2006, vol., 60, pp. 804–808.

    Google Scholar 

  2. 2.

    Gupta, C.K., Proc. COM 2002: The METSOC International Symposium on Vanadium, Canada, Montreal, 2002, pp. 153–170.

    Google Scholar 

  3. 3.

    Moskalyk, R.R. and Alfantazi, A.M., Miner. Eng., 2003, vol. 16, pp. 793–805.

    Article  Google Scholar 

  4. 4.

    Meshram, P., Kumari, J. and Pandey, B.D., Proc. IBAAS 2014: International Bauxite, Alumina and Aluminium Symposium, India, Visakhapatnam, 2014, pp. 170–183.

    Google Scholar 

  5. 5.

    Pradhan, J., Das, S.N., and Thakur, R.S., J. Sci. Ind. Res., 1999, vol. 58, pp. 948–953.

    Google Scholar 

  6. 6.

    Zhang, J.H., Zhang, W., Zhang, L., and Gu, S.Q., Solvent Extr. Ion Exc., 2014, vol. 32, pp. 221–248.

    Article  Google Scholar 

  7. 7.

    Mahanty, M.S., Dey, T.C., Srinivasan, S.R., and Bhatnagar, P.P., NML Tech. J., 1967, pp. 9–11.

    Google Scholar 

  8. 8.

    Zipperian, D.C. and Raghavan, S., Hydrometallurgy, 1985, vol. 13, pp. 265–281.

    Article  Google Scholar 

  9. 9.

    Mukherjee, T.K., Chakraborty, S.P., Bidaye, A.C., and Gupta, C.K., Miner. Eng., 1990, vol. 3, pp. 345–353.

    Article  Google Scholar 

  10. 10.

    Hu, J., Wang, X., Xiao, L., Song, S., and Zhang, B., Hydrometallurgy, 2009, vol. 95, pp. 203–206.

    Article  Google Scholar 

  11. 11.

    Li, M.T., Wei, C., Fan, G., Li, C.X., Deng, Z.G., and Li, X.B., Hydrometallurgy, 2009, vol. 98, pp. 308–313.

    Article  Google Scholar 

  12. 12.

    Li, W.X., Wang, X., Zhao, Z., Su, Z.H., Li, X.B., and Zhao, Q.J., Chin. J. Process Eng., 2010, vol. 10, pp. 548–553.

    Google Scholar 

  13. 13.

    Li, X., Wei, C., Deng, Z., Li, M., Li, C., and Fan, G., Hydrometallurgy, 2011, vol. 105, pp. 359–363.

    Article  Google Scholar 

  14. 14.

    Zhao, Z., Long, H., Li, X., Fan, Y., and Han, Z., Hydrometallurgy, 2012, vol. 115–116, pp. 52–56.

    Article  Google Scholar 

  15. 15.

    Okudan, M.D., Akcil, A., Tuncuk, A., and Deveci, H., Hydrometallurgy, 2015, vol. 152, pp. 76–83.

    Article  Google Scholar 

  16. 16.

    Baba, A.A. and Adekola, F.A., J. Saudi. Chem. Soc., 2012. vol. 16, pp. 377–386.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to Pratima Meshram.

Additional information

The article is published in the original.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Meshram, P., Kumari, J. & Pandey, B.D. Extraction of vanadium and synthesis of vanadium pentaoxide from Bayer’s sludge. Russ. J. Non-ferrous Metals 57, 338–346 (2016). https://doi.org/10.3103/S1067821216040064

Download citation

Keywords

  • vanadium sludge
  • aqueous leaching
  • diffusion controlled model
  • adsorption
  • vanadium pentaoxide