Russian Journal of Non-Ferrous Metals

, Volume 57, Issue 4, pp 338–346 | Cite as

Extraction of vanadium and synthesis of vanadium pentaoxide from Bayer’s sludge

  • Pratima MeshramEmail author
  • Abhilash
  • Jyotsna Kumari
  • B. D. Pandey
Metallurgy of Rare and Noble Metals


Wastes generated from the Bayer’s process serve as valuable resources for aluminum, vanadium, gallium, etc. This work aims to develop a environmentally acceptable and low-cost chemical leaching-cumpurification method for the recovery of vanadium sludge of Indian alumina plant (10–12% V2O5) and synthesize vanadium pentaoxide. The efficiency of leaching was evaluated by various lixiviants like acidified water, H2SO4, soda and NaOH against variation in pulp density and temperature. Maximum extraction (96%) vanadium was achieved using acidified water leaching at above ambient temperature in 1 h with 200 g/L pulp density following diffusion control model. Finally, the vanadium rich leach liquor was purified by steps of adsorption/precipitation etc., to remove with iron and silica to get vanadium pentaoxide. A high purity product of 99% V2O5 was obtained by allowing the adsorption at acidic pH followed by desorption and precipitation at 90°C.


vanadium sludge aqueous leaching diffusion controlled model adsorption vanadium pentaoxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Habashi, F., Metall., 2006, vol., 60, pp. 804–808.Google Scholar
  2. 2.
    Gupta, C.K., Proc. COM 2002: The METSOC International Symposium on Vanadium, Canada, Montreal, 2002, pp. 153–170.Google Scholar
  3. 3.
    Moskalyk, R.R. and Alfantazi, A.M., Miner. Eng., 2003, vol. 16, pp. 793–805.CrossRefGoogle Scholar
  4. 4.
    Meshram, P., Kumari, J. and Pandey, B.D., Proc. IBAAS 2014: International Bauxite, Alumina and Aluminium Symposium, India, Visakhapatnam, 2014, pp. 170–183.Google Scholar
  5. 5.
    Pradhan, J., Das, S.N., and Thakur, R.S., J. Sci. Ind. Res., 1999, vol. 58, pp. 948–953.Google Scholar
  6. 6.
    Zhang, J.H., Zhang, W., Zhang, L., and Gu, S.Q., Solvent Extr. Ion Exc., 2014, vol. 32, pp. 221–248.CrossRefGoogle Scholar
  7. 7.
    Mahanty, M.S., Dey, T.C., Srinivasan, S.R., and Bhatnagar, P.P., NML Tech. J., 1967, pp. 9–11.Google Scholar
  8. 8.
    Zipperian, D.C. and Raghavan, S., Hydrometallurgy, 1985, vol. 13, pp. 265–281.CrossRefGoogle Scholar
  9. 9.
    Mukherjee, T.K., Chakraborty, S.P., Bidaye, A.C., and Gupta, C.K., Miner. Eng., 1990, vol. 3, pp. 345–353.CrossRefGoogle Scholar
  10. 10.
    Hu, J., Wang, X., Xiao, L., Song, S., and Zhang, B., Hydrometallurgy, 2009, vol. 95, pp. 203–206.CrossRefGoogle Scholar
  11. 11.
    Li, M.T., Wei, C., Fan, G., Li, C.X., Deng, Z.G., and Li, X.B., Hydrometallurgy, 2009, vol. 98, pp. 308–313.CrossRefGoogle Scholar
  12. 12.
    Li, W.X., Wang, X., Zhao, Z., Su, Z.H., Li, X.B., and Zhao, Q.J., Chin. J. Process Eng., 2010, vol. 10, pp. 548–553.Google Scholar
  13. 13.
    Li, X., Wei, C., Deng, Z., Li, M., Li, C., and Fan, G., Hydrometallurgy, 2011, vol. 105, pp. 359–363.CrossRefGoogle Scholar
  14. 14.
    Zhao, Z., Long, H., Li, X., Fan, Y., and Han, Z., Hydrometallurgy, 2012, vol. 115–116, pp. 52–56.CrossRefGoogle Scholar
  15. 15.
    Okudan, M.D., Akcil, A., Tuncuk, A., and Deveci, H., Hydrometallurgy, 2015, vol. 152, pp. 76–83.CrossRefGoogle Scholar
  16. 16.
    Baba, A.A. and Adekola, F.A., J. Saudi. Chem. Soc., 2012. vol. 16, pp. 377–386.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • Pratima Meshram
    • 1
    Email author
  • Abhilash
  • Jyotsna Kumari
    • 1
  • B. D. Pandey
    • 1
  1. 1.CSIR-National Metallurgical LaboratoryJamshedpurIndia

Personalised recommendations