Skip to main content
Log in

Developmental tendencies of technology of ultradispersed and nanosized WC–Co hard alloys alloyed with tantalum carbide: Review

  • Refractory, Ceramic, and Composite Materials
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The main production methods of WC powders, notably, rapid carbothermic reduction (RCR), “calcination–reduction–carburization” (CRC), reduction of tungsten oxide with carbon in rotating furnaces, spray conversion process (SCP), high-energy milling, etc., are considered. The influence of growth inhibitors of the carbide grain on the structure of hard alloys is analyzed. According to the data of some authors, the optimal inhibitor content is 0.5–1.5 wt %, and the alloy embrittles at its higher content due to the formation of complex carbide phases. It is shown that nanosized hard alloys (d WC < 100 nm) cannot be prepared by the traditional liquid-phase sintering the mixtures, and the application of alternative solid-phase consolidation methods is necessary. The structure, properties, and application regions of submicron and nanosized hard alloys fabricated by hot pressing, high-frequency induction pressing, electric discharge sintering under the plasma pressure consolidation (PPC), spark plasma sintering (SPS), etc., are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fal’kovskii, V.A. and Klyachko, L.I., Tverdye splavy (Hard Alloys), Moscow: Ruda i Metally, 2005.

    Google Scholar 

  2. Andrievskii, R.A. and Ragulya, A.V., Nanostrukturnye materialy (Nanostructured Materials), Moscow: Akadema, 2005.

    Google Scholar 

  3. Johnston, G.P., Muenchausen, R., Smith, D.M., et al., Am. Ceram. Soc. Bull., 1992, vol. 75, no. 12, p. 3293.

    Article  Google Scholar 

  4. Starck, H.C., FRG Patent 19 852 459, 2000.

    Google Scholar 

  5. McCandlish, L.E., Kear, B.H., and Bhatia, USPatent 5352269, 1994.

    Google Scholar 

  6. Kudrya, N.A., Fal’kovskii, V.A., and Chistyakova, V.A., Vyyasnenie vozmozhnosti primeneniya plazmennogo poroshka vol’frama: Otchet 1 19-8211-38 (Revelation of the Possibility of Applying Plasma Tungsten Powder, Report no. 8211-38), Moscow: Vsesoyuzn. Nauch.Issled. Inst. Tverd. Splavov, 1983.

    Google Scholar 

  7. Conner, C.L., in Proc. 14th Int. Plansee Seminar, Austria: RWF Werbegesellschaft, 1977, p. 171.

    Google Scholar 

  8. McCandlish, L.E. and Seegopaul, P., in Proc. Eur. Conf. Advances in Hard Materials Production, Stockholm, 1996, p. 93.

    Google Scholar 

  9. Seegopaul, P. and Gao, L., US Patent 6?524?366, 2003.

    Google Scholar 

  10. Borovinskaya, I.P., Ignat’eva, T.I., Vershinnikov, V.I., and Sachkova, N.V., Inorg. Mater., 2004, vol. 40, no. 10, p. 1043.

    Article  Google Scholar 

  11. Yao, L. and Kear, B.H., US Patent 5?919?428, 1999.

    Google Scholar 

  12. Hojo, J., Oku, T., and Kato, A., J. Less-Common Met., 1978, vol. 59, no. 1, p. 85.

    Article  Google Scholar 

  13. Wan, C.-W., Chen, B.-S., and Sohn, H.Y., J. Mater. Res., 1993, vol. 8, no. 10, p. 2702.

    Article  Google Scholar 

  14. Tang, X., Haubner, R., Lux, B., and Kieffer, B., J. Phys. IV, 1995, vol. 5, p. 1013.

    Google Scholar 

  15. Kim, J.C. and Kim, B.K., Scr. Mater., 2004, vol. 50, no. 7, pp. 969–972.

    Article  Google Scholar 

  16. Sohn, H.Y., Ryu, T., Hwang, K.S., and Fang, Z.Z., Proc. NTCA, 2004, vol. 34, no. 2, pp. 533–537.

    Google Scholar 

  17. Sohn, H.Y., Ryu, T., Choi, J.W., et al., Jom-Us., 2007, vol. 59, no. 12, p. 44.

    Article  Google Scholar 

  18. Lin Sha, Lin Yang, Vang Ynibin, et al., Chin. Raze. Earth. Soc., 2003, vol. 21, no. 6, p. 677.

    Google Scholar 

  19. Kim, B.K., Ha, G.G., and Woo, Y., US Patent 6511551, 2003.

    Google Scholar 

  20. El-Eskandarany, M.S., Mahday, A.A., Ahmed, H., et al., J. Alloy Compd., 2000, vol. 312, nos. 1–2, p. 315.

    Article  Google Scholar 

  21. Butler, B.G., Lu, J., Fang, Z.G.Z., et al., Int. J. Powder Metal., 2007, vol. 43, no. 1, p. 35.

    Google Scholar 

  22. Lee, G., Ha, G.H., and Kim, B.K., J. Korean Inst. Metal Mater., 1999, vol. 37, no. 10, p. 1233.

    Google Scholar 

  23. Panov, V.S., Chuvilin, A.M., and Fal’kovskii, V.A., Tekhnologiya i svoistva spechennykh tverdykh splavov (Technology and Properties of Sintered Hard Alloys), Moscow: MISiS, 2004.

    Google Scholar 

  24. Liu, S., et al., in Proc. 16th Plansee Seminar, vol. 2, p. 353, Austria, 2005.

    Google Scholar 

  25. Fal’kovskii, V.S., Innovatsii v tekhnologii tverdykh splavov: Nano-i ul’tradispersnye struktury (Innovations in Technology of Hard Alloys: Nanodispersed and Ultradispersed Structures), Moscow: Mosk. Inst. Tonk. Khim. Tekhnol., 2008.

    Google Scholar 

  26. Borovsky, G.V., Annunciation, J.V., Abramov, A.V., et al., in Proc. 16th Plansee Seminar, vol. 2, p. 224–229, Austria, 2005.

    Google Scholar 

  27. Fang, Z., Wang, X., and Ryu, T., Int. J. Refract. Metal. Hard Mater., 2009, vol. 27, no. 2, p. 288.

    Article  Google Scholar 

  28. Schubert, W.D., in Proc. Int. Conf. Tungsten Hard Metals and Refractory Alloys, Annapolis, USA: MD, 2000, p. 13.

    Google Scholar 

  29. Maheshwari, P., Fang, Z.G.Z., and Sohn, H.Y., Int. J. Powder Metal., 2007, vol. 43, no. 2, p. 41.

    Google Scholar 

  30. Fang, Z.Z. and Eason, J.W., Int. J. Refract. Metal. Hard Mater., 1995, vol. 13, no. 5, p. 297.

    Article  Google Scholar 

  31. McCandlish, L.E., Kear, B.H., and Kim, B.K., Nanostruct. Mater., 1992, vol. 1, no. 2, p. 119.

    Article  Google Scholar 

  32. Wang, X., Fang, Z.Z., and Sohn, H.Y., Int. J. Refract. Metal. Hard Mater., 2008, vol. 26, no. 3, p. 232.

    Article  Google Scholar 

  33. Konyashin, I., Ries, B., Lachmann, F., et al., Int. J. Refract. Metal. Hard Mater., 2008, vol. 26, no. 3, p. 583.

    Article  Google Scholar 

  34. Klyachko, L.I., in Proc. 15th Plansee Seminar, Austria, 2001, pp. 203–207.

    Google Scholar 

  35. Panov, V.S., Teoreticheskie osnovy prochnosti spechennykh tverdykh splavov (Theoretical Foundations of the Strength of Sintered Hard Alloys), Moscow: MISiS, 2011.

    Google Scholar 

  36. Zaitsev, A.A., Vershinnikov, V.I., Panov, V.S., et al., Izv. Vyssh. Uchebn. Zaved., Poroshk. Metal. Funkts. Pokryt., 2013, no. 3, p. 21.

    Google Scholar 

  37. Gille, G., Szesny, B., Dreyer, K., et al., Int. J. Refract. Metal. Hard Mater., 2002, vol. 20, no. 1, p. 3.

    Article  Google Scholar 

  38. Jia, K., Fischer, T.E., and Gallois, B., Nanostruct. Mater., 1998, vol. 10, no. 5, p. 875.

    Article  Google Scholar 

  39. Bartha, L., Atato, P., Toth, A.L., et al., J. Adv. Mater., 2000, vol. 32, no. 3, p. 23.

    Google Scholar 

  40. Konner, C.L., J. Adv. Mater., 2004, p. 171.

    Google Scholar 

  41. Lisovskii, A.F., Sverkhtverd. Mater., 2011, no. 4, p. 9.

    Google Scholar 

  42. Zamulaeva, E.I., Development of Nanostructured Coatings Based on WC–Co, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Moscow: MISiS, 2009.

    Google Scholar 

  43. Alymov, M.I., Ross. Khim. Zh., 2009, vol. 53, no. 2, p. 111.

    Google Scholar 

  44. Tsvetkov, Yu.V., Blagoveshchenskii, Yu.V., Klyachko, L.I., et al., in Sbornik trudov 3-i Vserossiiskoi konferentsii po nanomaterialam NANO-2009 (Collected Works of 3rd All-Russian Conf. on Nanomaterials), Yekaterinburg, 2009, pp. 726–728.

    Google Scholar 

  45. Dubensky, E.M. and Nilsson, R.T., US Patent 5773735, 1996.

    Google Scholar 

  46. Wang, X., Fang, Z., and Sohn, H.Y., in Proc. Int. Conf. Powder Metallurgy & Particulate Materials., Engquist, J., Ed., Denver, US, 2007, pp. 8–10.

  47. Michalski, A. and Siemiaszko, D., Int. J. Refract. Metal. Hard Mater., 2007, vol. 25, no. 2, p. 153.

    Article  Google Scholar 

  48. Chuvildev, V.N., Moskvicheva, A.V., Blagoveshenskiy, Y.V., et al., in Proc. 17th Plansee Seminar, Austria, 2009, vol. 2, p. 240.

    Google Scholar 

  49. Azcona, I., Ordonez, A., Sanchez, J.M., and Castro, F., J. Mater. Sci., 2002, vol. 37, no. 19, p. 4189.

    Article  Google Scholar 

  50. Panov, V.S. and Shumenko, V.N., Tekhnologiya i svoistva spechennykh tverdykh splavov: Kurs lektsii (Technology and Properties of Sintered Hard Alloys: Course of Lectures), Moscow: MISiS, 2013.

    Google Scholar 

  51. Froschauer, L. and Fulrath, R.M., Direct observation of liquid-phase sintering in the system tungsten carbidecobalt: Rep. no. LBL-3189, Berkeley, CA: Lawrence Berkeley Laboratory, University of California, Oct. 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. S. Panov or A. A. Zaitsev.

Additional information

Original Russian Text © V.S. Panov, A.A. Zaitsev, 2014, published in Izvestiya VUZ. Poroshkovaya Metallurgiya, 2014, No. 3, pp. 38–48.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panov, V.S., Zaitsev, A.A. Developmental tendencies of technology of ultradispersed and nanosized WC–Co hard alloys alloyed with tantalum carbide: Review. Russ. J. Non-ferrous Metals 56, 477–485 (2015). https://doi.org/10.3103/S106782121504015X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106782121504015X

Keywords

Navigation