Skip to main content
Log in

Resource-saving and environment-saving production technologies of secondary aluminum alloys

  • Metallurgy of Nonferrous Metals
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The main directions of resource-saving and environment-saving fabrication technologies of secondary aluminum alloys in modern industrial conditions are considered. The types of feedstocks and applied smelting aggregates are analyzed, and promising ways to further improve this production process are shown. It is revealed that the traditional processing method of secondary aluminum feedstock, which is widely used in practice, is thermal treatment in a medium of molten chloride salts. Salt-free technologies of processing aluminum dross, which are based on the separation of metal and oxides by the mechanical effect on them under conditions of high temperatures in the medium of the furnace atmosphere or collector metal, are proposed. Their advantages over the widespread salt technology are considered: materials applied to treat the melt are substantially less expensive than alkali metal chlorides; dump slags are environmentally pure; and the process has high productivity since it is performed in one metallurgical aggregate, which excludes the necessity of cleaning the walls and bottom part in it. The examples of implementing the salt-free processing technologies of aluminum feedstock under consideration under conditions of several Russian metallurgical enterprises are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lainer, Yu.A., Reznichenko, V.A., Tuzhilin, A.S., et al., Tekhnol. Met., 2007, no. 6, pp. 2–11.

    Google Scholar 

  2. Keverhijan, V., J. Miner. Metal. Mater. Soc., 2002, vol. 54, no. 2, pp. 38–41.

    Article  Google Scholar 

  3. Makarov, G.S., Tekhnol. Legk. Splav., 2004, no. 1, pp. 25–30.

    Google Scholar 

  4. How to develop aluminum recycling? Metallosnabzh. Sbyt, 2004, no. 4, pp. 64–66.

  5. Golovnykh, N.V., Grigor’ev, V.G., Chernykh, A.A., et al., in Tr. Mezhdunarodnoi konferentsii “Strategiya razvitiya mineral’no-syr’evogo kompleksa v XXI veke” (Proc. Int. Conf. “Developmental Strategy of Mineral-Feedstock Complex in XXI Century), Moscow: Russ. Univ. People’s Friendship, 2004, pp. 170–172.

    Google Scholar 

  6. Lainer, Yu.A., Mil’kov, G.A., and Tuzhilin, A.S., in Tr. nauchno-tekhnicheskoi konferentsee “Problemy i perspektivy razvitiya metallurgii i mashinostroeniya s ispol’zovaniem zavershennykh fundamental’nykh issledovanii i NIOKR” (Proc. Sci.-and-Tech. Conf. “Problems and Prospects of the Development of Metallurgy and Machinery Using Finished Fundamental Studies and Research Design and Development Works”), Yekaterinburg: Ural Branch, Russ. Acad. Sci., 2011, vol. 2, pp. 581–587.

    Google Scholar 

  7. Kurchner, E., Erzmetall., 2002, vol. 55, no. 9, pp. 465–470.

    Google Scholar 

  8. Shustrov, A.Yu., Matsenko, Yu.A., and Nagibin, V.A., Tsvetn. Met., 2004, no. 1, pp. 70–73.

    Google Scholar 

  9. Larionov, G.V., Vtorichnyi alyuminii (Secondary Aluminum), Moscow: Metallurgiya, 1967.

    Google Scholar 

  10. Altodorfer, J., J. Miner. Metal. Mater. Soc., 2000, vol. 52, no. 11, pp. 19–25.

    Article  Google Scholar 

  11. Khudyakov, I.F., Doroshkevich, A.P., Klyain, S.E., et al., Tekhnologiya vtorichnykh tsvetnykh metallov (Technology of Secondary Nonferrous Metals), Moscow: Metallurgiya, 1981.

    Google Scholar 

  12. Ireland, D.T., US Patent 6379418, 2002.

  13. Barbin, N.K., Moiseev, G.K., Vatolin, N.A., et al., RF Patent 2244027, 2005.

  14. Potanin, S.L., Mikhailov, V.I., Tumanov, V.N., et al., USSR Inventor’s Certificate No. 1199819, 1985.

  15. Deev, V.B. and Selyanin, I.F., Khosen Ri, et al., Liteishchik Rossii, 2012, no. 10, pp. 14–17.

    Google Scholar 

  16. Deev, V.B., Degtyar, V.A., Kutsenko, A.I., et al., Steel Trans., 2007, vol. 37, no. 12, pp. 991–994.

    Article  Google Scholar 

  17. Deev, V.B., Development of Scientific Foundations of Thermal and Electromagnetic Effects on Alloys and Development of Resource-Saving Fabrication Technologies of High-Quality Casts of Aluminum Alloys, Extended Abstract of Doctoral (Eng.) Dissertation, Komsomol’sk-na-Amure: Komsomol’sk-na-Amure State Tech. Univ., 2012.

    Google Scholar 

  18. Selyanin, I.F., Deev, V.B., Voitkov, A.P., and Bashmakova, N.V., Liteishchik Rossii, 2006, no. 2, pp. 18–20.

    Google Scholar 

  19. Kalenik, O.N., Nemenenok, B.M., Dovnar, G.V., and Tribushevskii, V.L., Metall. Mashinostr., 2004, no. 3, pp. 23–25.

    Google Scholar 

  20. Novichkov, S.B., Tsvetn. Met., 2004, no. 1, pp. 67–69.

    Google Scholar 

  21. Tribushevskii, V.L., Rimoshevskii, S.L., Ivanov, D.E., and Kalenik, O.N., Metall. Mashinostr., 2004, no. 3, p. 4.

    Google Scholar 

  22. Kon’ko, O.I., Kuris, Yu.V., and Gritsai, V.P., Vost.-Evrop. Zh. Peredovykh Tekhnol., 2011, no. 3/11 (51), pp. 11–12.

    Google Scholar 

  23. Huber, J., Elutrotechnik (Schweiz), 1988, no. 9, pp. 83–85.

    Google Scholar 

  24. Beckman, M. and Unger, T.W., in Proc. Tech. Ses. Annu. Meet. (San Diego: Calif.), Light Metals, 1992, pp. 1159–1162.

    Google Scholar 

  25. Galevskii, G.V., Kulagin, N.M., and Mintsis, M.Ya., Metallurgiya vtorichnogo alyuminiya (Metallurgy of Secondary Aluminum), Novosibirsk: Nauka, 1998.

    Google Scholar 

  26. Fedotov, V.M., Lebedev, V.N., and Kuznetsov, M.N., in Tekhnologiya. Ser. Resursosberegayushchie protsessy, oborudovanie, materialy (Technology. Ser. Resource-Saving Processes, Equipment, Materials), Moscow: All-Russia Inst. Interdepart. Inform, Res. Inst. Radio, 1994, part 1–2, pp. 39–41.

    Google Scholar 

  27. Vigier, P., Tirilly, L., and Julliard, J., Fr. Patent 2559786, 1985.

  28. Kapur, E.P. and Medvedeva, L.N., USSR Inventor’s Certificate No. 753919, 1980.

  29. Malinovskii, V.S., Malinovskii, V.D., Meshkov, M.A., and Yarnykh, L.V., Metall. Mashinostr., 2004, no. 4, pp. 2–7.

    Google Scholar 

  30. Shustrov, A.Yu., Matsenko, Yu.A., and Nagibin, V.A., Tsvetn. Met., 2004, no. 1, pp. 70–73.

    Google Scholar 

  31. Fedotov, V.M., Chervov, G.A., and Luchinin, N.M., RF Patent 2004607, 1993.

  32. Fedotov, V.M. and Chervov, G.A., RF Patent 2002831, 1993.

  33. Fedotov, M.V., Selyanin, I.F., and Fedotov, V.M., Liteishchik Rossii, 2007, no. 8, pp. 28–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. F. Selyanin.

Additional information

Original Russian Text © I.F. Selyanin, V.B. Deev, A.V. Kukharenko, 2015, published in Izvestiya VUZ. Tsvetnaya Metallurgiya, 2015, No. 2, pp. 20–25.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selyanin, I.F., Deev, V.B. & Kukharenko, A.V. Resource-saving and environment-saving production technologies of secondary aluminum alloys. Russ. J. Non-ferrous Metals 56, 272–276 (2015). https://doi.org/10.3103/S1067821215030189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821215030189

Keywords

Navigation