Analysis of the sulfur decoppering from molten lead by powder injection


A copper removal process was carried out in a Pb-Cu alloy through sulfur powder injection of three different sizes (79.23, 202.83 and 597.15 μm) by a top submerged lance with nitrogen as carrying gas. The higher copper removal as CuS2 was obtained for the sulfur powder size of 79.23 μm, while the lowest copper removal efficiency was attained for the coarse particle size of 597.15 μm. The copper removal was explained according with a relationship between the residence and melting time. The sizes of 202.83 and 597.15 μm presented a longer residence time that promotes the sulfur coalescence and it is lost by burning. An injection-cooling trial was developed and a decoppering fraction of 0.29 with a sulfur efficiency of 72.98% in average was obtained for the fine size. The injection-cooling process represents an attractive route for secondary lead producers in the copper removal from molten lead.

This is a preview of subscription content, access via your institution.


  1. 1.

    Kreusch, M., Ponte, M., Ponte, H., Kaminari, N., Marino, C., and Mymrin, V., Resources Conservation and Recycling, 2007, vol. 52, p. 368.

    Article  Google Scholar 

  2. 2.

    Prengaman, R.D., Journal Power Sources, 2005, vol. 144, p. 426.

    Article  Google Scholar 

  3. 3.

    Gutierrez, V.H., Cruz Ramirez, A., Vargas Ramirez, M., Palacios Beas, E., and Sanchez Alvarado, R.G., J. Transaction of Nonferrous Metals Society of China, 2014, vol. 24, p. 544.

    Article  Google Scholar 

  4. 4.

    Ramachandra, S., Resource Recovery and Recycling from Metallurgical Wastes: Waste Management Series 7, first edition, Elsevier B.V.: The Netherlands, 2006, p. 200.

    Google Scholar 

  5. 5.

    Ellis, T. and Mirza, A., Journal of Power Sources, 2010, vol. 195, p. 4525.

    Article  Google Scholar 

  6. 6.

    Davey, T., The Physical Chemistry of Lead Refining, Lead-Zinc-Tin, first edition, USA: TMS, 1980, p. 477.

    Google Scholar 

  7. 7.

    Davey, T., lead-zinc 2000, The Physical Chemistry of Lead Refining, Lead-Zinc-Tin, USA: TMS, 2000, p. 617.

    Google Scholar 

  8. 8.

    Rabah, M., Barakat, M., and Farghaly, F., Journal Physicochemical Problems of Mineral Processing, 1999, vol. 33, p. 181.

    Google Scholar 

  9. 9.

    Etsuji, K. and Hiromi, M., Copper removal from lead by dry method, Jpn. Kokai Tokkyo Koho JP, vol. 62 33, no. 728, p. 5.

  10. 10.

    Chakrabarti, D.J. and Laughlin, D.E., The Cu-S (Copper-sulfur) system, Bulletin of Alloy Phase Diagrams, 1983, vol. 4, no. 3, p. 254

    Article  Google Scholar 

  11. 11.

    Bither, T.A., Bouchard, R.J., Cloud, W.H., Donohue, P.C., and Siemons, W.J., Inorganic Chemical, 1968, vol. 7, pp. 2208–2220.

    Article  Google Scholar 

  12. 12.

    King, H.E. and Prewitt, Ch.T., American Mineralogist, 1979, vol. 64, pp. 1265–1271.

    Google Scholar 

  13. 13.

    Goh, S.W., Buckley, A.N., and Lamb, R.N., Minerals Engineering, 2006, vol. 19, pp. 204–208.

    Article  Google Scholar 

  14. 14.

    Plascencia, G., Romero, A., Morales, R., Hallen, M., and Chavez, F., Canadian Metallurgical Quarterly, 2001, vol. 40, no. 3, p. 309.

    Article  Google Scholar 

  15. 15.

    Plascencia, G., Eliminación de Cobre, Níquel y Plata para el Reciclado de Baterías, [Dissertation] ESIQIE-IPN, Mexico, 1999, p. 28 [in Spanish].

    Google Scholar 

  16. 16.

    Emi, T. and Yin, H., Injection metallurgy in steel industry current and future development, Proc. the Howard Worner International Symposium on Injection in Pyrometallurgy, TMS, 1996, p. 35.

    Google Scholar 

  17. 17.

    Vargas, M., Romero, A., Morales, R., Hernandez, M., Chavez, F., and Castro, J., Steel Research, 2001, vol. 72, no. 5, p. 73.

    Google Scholar 

  18. 18.

    Ohguchi, S. and Robertson, D., Ironmaking and Steelmaking, 1984, vol. 11, no. 5, p. 262.

    Google Scholar 

  19. 19.

    Analytical Methods for Atomic Absorption Spectrometry, PERKIN-ELMER, 1994, pp. 73, 93.

  20. 20.

    Romero, A., Morales, R., Chávez, F., López, S., and Palafox, J., Eliminación de Cobre, Níquel y Plata del Plomo Líquido, Technical Report of the Project IPN-ENERTEC, DIM-ESIQIE-IPN, 1999, p. 15.

    Google Scholar 

  21. 21.

    Nilmani, M. and Langberg, D., Metallurgical and Materials Transactions B, 1996, vol. 27B, p. 780.

    Google Scholar 

  22. 22.

    Gaskell, D., An Introduction to Transport Phenomena in Materials Engineering, Ed. Macmillan Publishing Inc., 1992, p. 401.

    Google Scholar 

  23. 23.

    Gutierrez, V.H., Vargas, M., Cruz, A., Romero, A., and Rivera, J.E., Materials Research, 2014, vol. 17, no. 4, pp. 838–850.

    Article  Google Scholar 

  24. 24.

    Calvert, L., National Research Council of Canada, Ottawa, Canada, AMMIAY, 1979, vol. 64, p. 1265.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Victor Hugo Gutierrez P..

Additional information

The article is published in the original.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gutierrez P., V.H., Cruz R., A., Romero S., J.A. et al. Analysis of the sulfur decoppering from molten lead by powder injection. Russ. J. Non-ferrous Metals 56, 251–260 (2015).

Download citation


  • lead refining
  • decoppering
  • sulfur injection
  • particle size