Skip to main content
Log in

Hard wear-resistant TiAlSiCN/MoSeC coatings with a low friction coefficient at room and elevated temperatures

  • Nanostructured Materials and Functional Coatings
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

TiAlSiCN and TiAlSiCN/MoSeC coatings are fabricated by magnetron sputtering of segmented SHS and compacted powder targets. The structure and composition of coatings are investigated by X-ray phase analysis, X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy, and glow-discharge optical emission spectroscopy. The TiAlSiCN coating is based on the fcc phase with crystallite size <15 nm; the crystallite size decreases under sputtering of TiAlSiCN and MoSeC segments in a ratio of 3: 1 and crystallites amorphized at a ratio of 2: 2. The MoSe2 phase is also found in TiAlSiCN/MoSeC coatings. According to the results of nanoindentation, the hardness of TiAlSiCN coatings is 40 GPa and that of TiAlSiCN/MoSeC coatings is 28 and 12 GPa at ratios of 3: 1 and 2: 2, respectively. The friction coefficient of TiAlSiCN coatings at room temperature is 0.75, it decreases to 0.05 after the introduction of MoSeC, and wear resistance of coatings increases as well. A low friction coefficient (<0.1) under tribological tests of TiAl-SiCN/MoSeC coatings with continuous heating is invariable up to 300°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levashov, E.A. and Shtansky, D.V., Usp. Khim., 2007, no. 76 (5), p. 501.

    Google Scholar 

  2. Shtansky, D.V., Kuptsov, K.A., Kiryukhantsev-Korneev, Ph.V., et al., Surf. Coat. Technol., 2011, vol. 205, p. 4640.

    Article  Google Scholar 

  3. Muratore, C. and Voevodin, A.A., Annu. Rev. Mater. Res, 2009, vol. 39, p. 297.

    Article  Google Scholar 

  4. Shtansky, D.V., Sheveyko, A.N., Sorokin, D.I., et al., Surf. Coat. Technol., 2008, vol. 202, p. 5953.

    Article  Google Scholar 

  5. Shtansky, D.V., Kuptsov, K.A., Kiryukhantsev-Korneev, Ph.V., and Sheveiko, A.N., Surf. Coat. Technol., 2012, vol. 206, p. 4840.

    Article  Google Scholar 

  6. Kuptsov, K.A., Kiryukhantsev-Korneev, Ph.V., Sheveiko, A.N., and Shtansky, D.V., Surf. Coat. Technol., 2013, vol. 216, p. 273.

    Article  Google Scholar 

  7. Levashov, E.A., Pogozhev, Yu.S., Rogachev, A.S., et al., Izv. Vyssh. Uchebn. Zaved., Poroshk. Metall. Funkts. Pokryt., 2010, no. 3, p. 26.

    Google Scholar 

  8. Oliver, W.C. and Pharr, G.M., J. Mater. Res., 1992, vol. 7, p. 1564.

    Article  Google Scholar 

  9. Pharr, G., Mater. Sci., 1998, vol. 253, p. 151.

    Google Scholar 

  10. Ding, X., Zeng, X.T., and Goto, T., Surf. Coat. Technol., 2005, vol. 198, p. 432.

    Article  Google Scholar 

  11. Polcar, T., Evaristo, M., Stueber, M., and Cavaleiro, A., Surf. Coat. Technol., 2008, vol. 202, p. 2418.

    Article  Google Scholar 

  12. Polcar, T. and Cavaleiro, A., Surf. Coat. Technol., 2011, vol. 206, p. 686.

    Article  Google Scholar 

  13. Dreiling, I., Haug, A., Holzschuh, H., and Chasse, T., Surf. Coat. Technol., 2009, vol. 204, p. 1008.

    Article  Google Scholar 

  14. Escobar-Alarcon, L., Camps, E., Romero, S., et al., Appl. Phys. A, 2010, vol. 101, p. 771.

    Article  Google Scholar 

  15. Voevodin, A.A. and Zabinski, J.S., Wear, 2006, vol. 61, p. 1285.

    Article  Google Scholar 

  16. Fominski, V.Yu., Romanov, R.I., Gusarov, A.V., and Celis, J.-P., Surf. Coat. Technol., 2007, vol. 201, p. 7813.

    Article  Google Scholar 

  17. Mallouky, A. and Bernede, J.C., Thin Solid Films, 1988, vol. 158, p. 285.

    Article  Google Scholar 

  18. Polcar, T., Evaristo, M., Colac, R., et al., Acta Mater., 2008, vol. 56, p. 5101.

    Article  Google Scholar 

  19. Matthews, D.T.A., Ocelik, V., Bronsveld, P.M., and De Hosson, J.Th.M., Acta Mater., 2008, vol. 56, p. 1762.

    Article  Google Scholar 

  20. Voevodin, A.A., O’Neill J.P., and Zabinski, J.S., Surf. Coat. Technol., 1999, vol. 116, p. 36.

    Article  Google Scholar 

  21. Gilmore, R., Baker, M.A., Gibson, P.N., et al., Surf. Coat. Technol., 1998, vols. 108–109, p. 36.

    Google Scholar 

  22. Martínez-Martínez, D., López-Cartes, C., Fernández, A., and Sánchez-López, J.C, Surf. Coat. Technol., 2008, vol. 203, p. 756.

    Article  Google Scholar 

  23. Bae, Y.W., Lee, W.Y., Besmann, T.M., et al., Mater. Sci. Eng., 1996, vol. 209, p. 372.

    Article  Google Scholar 

  24. Kubart, T., Polcar, T., Kopecky, L., et al., Surf. Coat. Technol., 2005, vol. 193, p. 230.

    Article  Google Scholar 

  25. Polcar, T., Evaristo, M., Stueber, M., and Cavaleiro, A., Wear, 2009, vol. 266, p. 393.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bondarev.

Additional information

Original Russian Text © A.V. Bondarev, Ph.V. Kiryukhantsev-Korneev, D.V. Shtansky, 2013, published in Izvestiya VUZ. Poroshkovaya Metallurgiya, 2013, No. 4, pp. 60–67.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondarev, A.V., Kiryukhantsev-Korneev, P.V. & Shtansky, D.V. Hard wear-resistant TiAlSiCN/MoSeC coatings with a low friction coefficient at room and elevated temperatures. Russ. J. Non-ferrous Metals 56, 107–113 (2015). https://doi.org/10.3103/S106782121501006X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106782121501006X

Keywords

Navigation