Russian Journal of Non-Ferrous Metals

, Volume 55, Issue 5, pp 489–493 | Cite as

Ceramic-metallic (TiN-Cu) nanostructured ion-plasma vacuum-arc coatings for cutting hard-alloy tools

  • I. V. Blinkov
  • A. O. Volkhonskii
  • A. I. Laptev
  • T. A. Sviridova
  • N. Yu. Tabachkova
  • D. S. Belov
  • A. V. Ershova
Nanostructured Materials and Functional Coatings

Abstract

The structure and properties of TiN-Cu coatings with a broad range of copper concentrations (CCu = 0.6–20 at %), which were fabricated by the ion-plasma vacuum-arc deposition on a TT10K8B hard-alloy tool, including its cutting resistant tests, were investigated. The introduction of copper into the coating composition diminishes crystallites of the nitride phase from 100 to 20 nm. The hardness of coatings increases from 20 to 40 GPa, with an increase in CCu to 7–8%. The further increase in the copper content, which is accompanied by diminishing crystallites of the nitride phase, is characterized by a decrease in hardness to 14–15 GPa, which is associated with the influence of soft plastic metal. Resistant cutting tests of steel 35KhGSA of removable multifaceted plates (RMP) with the TiN-Cu coatings indicate that the optimally selected composition (TiN-7-8 at % Cu) increases RMP resistance more than by a factor of 6 and 2.5 as compared with tools without the coating and with the TiN coating deposited according to the basic technology, respectively.

Keywords

ion-plasma deposition coatings for cutting tools structure and phase formation in the Ti-Cu-N system hardness of coatings resistance of the coated tool nanostructurization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shtanskii, D.V., Kulinich, S.A., Levashov, E.A., and Moore, J.J., Phys. Solid State, 2003, vol. 45, no. 6, p. 1177.CrossRefGoogle Scholar
  2. 2.
    Blinkov, I.V., Volkhonskii, A.O., and Yudin, A.G., Fiz. Khim. Obrab. Mater., 2011, no. 6, p. 18.Google Scholar
  3. 3.
    Volkhonsky, A. and Blinkov, I.V., Rus. J. Non-Ferrous Met., 2012, vol. 53, no. 3, pp. 259–265.CrossRefGoogle Scholar
  4. 4.
    Veprek, S., Veprek-Heijman, M.G.J., Karvankova, P., and Prochazka, J., Thin Solid Films, 2005, vol. 476, pp. 1–9.CrossRefGoogle Scholar
  5. 5.
    Ivanov, Yu.F., Koval, N.N., Krysina, O.V. et al., Surf. Coat. Technol., 2012, vol. 207, pp. 430–434.CrossRefGoogle Scholar
  6. 6.
    Patsalas, P., Abadias, G., Matenoglou, G.M. et al., Surf. Coat. Technol., 2010, vol. 205, pp. 1324–1330.CrossRefGoogle Scholar
  7. 7.
    Li, Z.G., Miyake, S., Kumagai, M. et al., Surf. Coat. Technol., 2004, vol. 183, pp. 62–68.CrossRefGoogle Scholar
  8. 8.
    Riviere, J.P., Templier, C., and Bourhis, E., Le, Surf. Coat. Technol., 2006, vol. 200, pp. 6298–6302.CrossRefGoogle Scholar
  9. 9.
    Shelekhov, E.V., Ivanov, A.N., and Fomicheva, E.I., Zavod. Lab., 1989, no. 12, pp. 41–45.Google Scholar
  10. 10.
    Shelekhov, E.V. and Sviridova, T.A., Metalloved. Term. Obrab. Met., 2000, no. 8, pp. 16–19.Google Scholar
  11. 11.
    Ivanov, A.N., Shelekhov, E.V., and Kuz’mina, E.N., Zavod. Lab. Diagnost. Mater., 2004, vol. 70, no. 11, pp. 29–33.Google Scholar
  12. 12.
    Blinkov, I.V., Ankin, V.N., Volkhonskii, A.O. et al., Izv. Vuzov. Poroshk. Metallurgiya Funkts. Pokrytiya, 2009, no. 1, pp. 44–52.Google Scholar
  13. 13.
    Dul’nev, G.N. and Zarichnyak, Yu.P., Teploprovodnost’ smesei i kompozitsionnykh materialov: Spravochnik (Thermal Plasticity of Mixtures and Composite Materials), Leningrad: Energiya, 1974.Google Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • I. V. Blinkov
    • 1
  • A. O. Volkhonskii
    • 1
  • A. I. Laptev
    • 1
  • T. A. Sviridova
    • 1
  • N. Yu. Tabachkova
    • 1
  • D. S. Belov
    • 1
  • A. V. Ershova
    • 1
  1. 1.National University of Science and Technology “MISiS”MoscowRussia

Personalised recommendations