Skip to main content
Log in

Taking into account grain growth during the finite-element modeling of the superplastic formation of promising construction materials

  • Pressure Treatment of Metals
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

A way to take into account the influence of grain growth in the statement of the edge problem for the mechanics of a deformed solid as applied to the superplastic formation of microcrystalline and ultra-fine-grain materials is suggested. The concrete example of a numerical solution for the edge problem of creep theory in a medium of the ANSYS software complex according to the published experimental data is suggested. A satisfactory agreement between the results of the solution to the edge problem and the experimental data is obtained. This solution is analyzed, and certain features of the character of the stress-strained state in the deformation site are revealed. In particular, it is established that complex disproportionate loading occurs in the vicinity of the fastening contour. Under this loading, the stress trajectories in the Il’yushin space have a larger curvature, despite the fact that the curvature of the corresponding deformation trajectories in the deformation space is relatively small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smirnov, O.M., Obrabotka metallov davleniem v sostoyanii sverkhplastichnosti (Pressure Treatment of Metals in the Superplasticity State), Moscow: Mashinostroenie, 1979.

    Google Scholar 

  2. Kaibyshev, O.A., Sverkhplastichnost’ promyshlennykh splavov (Superplasticity of Industrial Alloys), Moscow: Metallurgiya, 1984.

    Google Scholar 

  3. Masterov, V.A. and Berkovskii, V.S., Teoriya plasticheskoi deformatsii i obrabotki metallov davleniem (Theory of Plastic Deformation and Pressure Treatment of Metals), Moscow: Metallurgiya, 1989.

    Google Scholar 

  4. Valiev, R.Z. and Aleksandrov, I.V., Nanostrukturnye materialy, poluchennye metodom intensivnoi plasticheskoi deformatsii (Nanostructured Materials Obtained by the Method of Intense Plastic Deformation), Moscow: Logos, 2000.

    Google Scholar 

  5. Mulyukov, R.R., Ross. Nanotekhnol., 2007, vol. 2, nos. 7–8, p. 38.

    Google Scholar 

  6. Valiev, R.Z., Ross. Nanotekhnol., 2006, vol. 1, nos. 1–2, p. 208.

    Google Scholar 

  7. Kawasaki, M. and Langdon, T.G., J. Mater. Sci., 2007, vol. 42, p. 1782.

    Article  CAS  Google Scholar 

  8. Valiev, R.Z., Islamgaliev, R.K., and Semenova, I.P., Mater. Sci. Eng., 2007, vol. A463, p. 2.

    CAS  Google Scholar 

  9. Mulyukov, R.R., Imayev, R.M., and Nazarov, A.A., J. Mater. Sci., 2008, vol. 43, p. 7257.

    Article  CAS  Google Scholar 

  10. Kruglov, A.A. and Lutfullin, R.Ya., Probl. Mashinostr. Nadezhn. Mashin, 2009, no. 1, p. 69.

  11. Lutfullin, R.Ya, Kruglov, A.A., Safiullin, R.V., et al., Mater. Sci. Eng., 2009, vol. A503, p. 52.

    CAS  Google Scholar 

  12. Padmanabhan, K.A., Vasin, R.A., and Enikeev, F.U., Superplastic Flow: Phenomenology and Mechanics, Berlin-Heidelberg: Springer, 2001.

    Google Scholar 

  13. Rabotnov, Yu.N., Polzuchest’ elementov konstruktsii (Creep of Construction Elements), Moscow: Nauka, 1966.

    Google Scholar 

  14. Vasin, R.A., Enikeev, F.U., Tokuda, M., and Safiullin, R.V., Int. J. Non-linear Mech., 2003, vol. 35, p. 799.

    Article  Google Scholar 

  15. Kumar, V.S., Viswanathan, D., and Natarajan, S., J. Mater. Proc. Technol, 2006, vol. 173, p. 247.

    Article  CAS  Google Scholar 

  16. O’Brien, M.J., Bremen, H.F., Furukawa, M., et al., Mater. Sci. Eng., 2007, vol. A456, p. 236.

    Google Scholar 

  17. Luckey, S.G., Friedman, P.A., and Weinmann, K.J., J. Mater. Proc. Technol., 2007, vol. 194, p. 30.

    Article  CAS  Google Scholar 

  18. Yoon, J.H., Lee, H.S., Yi, Y.M., and Jang, Y.S., J. Mater. Proc. Technol., 2007, vol. 187–188, p. 463.

    Article  Google Scholar 

  19. Giuliano, G. and Franchitti, S., Int. J. Machine Tools Manuf., 2007, vol. 47, p. 471.

    Article  Google Scholar 

  20. Yoon, J.H., Lee, H.S., and Yi, Y.M., J. Mater. Proc. Technol., 2008, vol. 201, p. 68.

    Article  CAS  Google Scholar 

  21. Giuliano, G. and Franchitti, S., Int. J. Machine Tools Manuf., 2008, vol. 48, p. 1519.

    Article  Google Scholar 

  22. Hojjati, M.H., Zoorabadi, M., and Hosseinipour, S.J., J. Mater. Proc. Technol., 2008, vol. 205, p. 482.

    Article  CAS  Google Scholar 

  23. Kruglov, A.A., Zagirov, T.M., Karimov, M.S., and Enikeev, F.U., Probl. Mashinostr. Avtomat., 2010, no. 2, p. 65.

  24. Il’yushin, A.A., Plastichnost’ (Plasticity), Moscow: Gostekhizdat, 1948.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Zagirov.

Additional information

Original Russian Text © T.M. Zagirov, Yu.V. Zherebtsov, E.M. Kadirov, F. U. Enikeev, 2011, published in Izvestiya VUZ. Tsvetnaya Metallurgiya, 2011, No. 1, pp. 41–45.

About this article

Cite this article

Zagirov, T.M., Zherebtsov, Y.V., Kadirov, E.M. et al. Taking into account grain growth during the finite-element modeling of the superplastic formation of promising construction materials. Russ. J. Non-ferrous Metals 52, 39–43 (2011). https://doi.org/10.3103/S1067821211010263

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821211010263

Keywords

Navigation