Skip to main content
Log in

The effect of dispersion hardening on the regularities and mechanisms of the creep of copper with submicron grain sizes

  • Refractory, Ceramic, and Composite Materials
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

Regularities and mechanisms of the creep of submicrocrystalline copper and Cu-1.1 vol % Al2O3 dispersion-hardened powder composite in a temperature range of (0.2–0.35) T m Cu have been investigated. The role that the grain-boundary state and dispersion-hardening material with Al2O3 nanosized (10–40 nm) particles plays in the development of plastic deformation during creep is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kolobov, Yu.R., Valiev, R.Z., Grabovetskaya, G.P., et.al., Zernogranichnaya diffuziya i svoistva nanostructurnykh materialov, (Grain-boundary Diffusion and Properties of Nanostructure Materials), Novosibirsk: Nauka, 2001.

    Google Scholar 

  2. Noskova, N.I. and Mulyukov, R.R., Submikrokristallicheskie i nanokristallicheskie metally i splavy, (Submicrocrystalline and Nanocrystalline Metals and Alloys), Yekaterinburg: Ural Division, Russ. Acad. Sci., 2003.

    Google Scholar 

  3. Bokshtein, B.S., Kopetskii, I.V., and Shvindlerman, L.S., Termodinamika i kinetika granits zeren v metallakh, (Thermodynamics and Kinetics of Grain Boundaries in Metals), Moscow: Metallurgiya, 1986.

    Google Scholar 

  4. Chuvil’dyaev, V.N., Neravnovesnye granitsy zeren v metallakh. Teoriya i prilozhenie, (Nonequilibrium Grain Boundaries in Metals. Theory and Application), Moscow: Fizmatlit, 2004.

    Google Scholar 

  5. Kolobov, Yu.R., Diffuzionno-kontroliruemye protsessy na granitse zeren i plastichnost’ metallicheskikh polukristallov, (Diffusion-controlled Processes at Grain Boundaries and Plasticity of Metal Semicrystals), Novoshibirsk: Nauka, 1998.

    Google Scholar 

  6. Schilling, W.F. and Grant, N.J., Metal. Intern., 1973, no. 5, p. 117.

  7. Kolobov, Yu.R., Grabovetskaya, G.P., Ivanov, K.V., and Ivanov, M.B. Khim. Interesakh Ustoichivogo Razvitiya, 2002, vol. 10, p. 111.

    CAS  Google Scholar 

  8. Islamgaliev, R.K., Buchgraber, W., Kolobov, Yu.R., et al., Mater. Sci. Eng., 2001, vol. A 319–321, p. 874.

    Google Scholar 

  9. Garofalo, F., Zakony polzuchesti i dlitel’noi prochnosty metallov i splavov, (Laws of Creep and Creep Rupture Strength of Metals and Alloys), Moscow: Metallurgiya, 1968.

    Google Scholar 

  10. Cobl, R.L., J. Appl. Phys., 1963, vol. 34, no. 7, p.1679.

    Article  ADS  Google Scholar 

  11. Grabskii, M.V., Strukturnaya sverkhplastichnost’ metallov, (Structural Superplasticity of Metals), Moscow: Metallurgiya, 1975.

    Google Scholar 

  12. Frost, G. J. and Ashby, M.F., Karty mekhanizmov deformatsii, (Deformation Mechanism Map), Chelyabinsk: Metallurgiya, 1989 (in Russian).

    Google Scholar 

  13. Honeycomb, R., Plasticheskaya deformatsiya metallov, (Plastic Deformation of Metals), Moscow: Mir, 1972 (in Russian).

    Google Scholar 

  14. Raj, S.V. and Langdon, T.G., Acta Metal., 1989, vol. 37, no. 3, p. 843.

    Article  CAS  Google Scholar 

  15. Panin, V.E., Fiz. Mezomekhanika, 2000, vol. 1, no. 6, p. 5.

    Google Scholar 

  16. Larikov, L.N., Metallofiz. Noveishie Tekhnol., 1995, vol. 17, no. 1, p. 3.

    Google Scholar 

  17. Pozdnyakov, V.A. and Glezer, A.M., Fiz. Tverd. Tela, 2002, vol. 44,issue 4, p. 705.

    Google Scholar 

  18. Valiev, R.Z., Kozlov, E.V., Ivanov, Yu.F., et al., Acta Metal. Mater., 1994, vol. 42, no. 7, p. 2467.

    Article  CAS  Google Scholar 

  19. Rösler, J., Joos, R., and Arzt, E., Acta Metal. Mater., 1990, vol. 38, no. 4, p. 671.

    Article  Google Scholar 

  20. Sauer, C., Weisgraber, T., Dehm, G., et al., Z. Metallk, 1998, Bd. 89, no. 2, p. 119.

    CAS  Google Scholar 

  21. Grundmann, U., Gerner, M., Heilmaier, M., et al., Mater. Sci. Eng., 1997, vol. A234–236, p. 505.

    Google Scholar 

  22. Harrison, L.G., Trans. Faraday Soc., 1961, vol. 57, no. 7, 9. 1191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. Grabovetskaya.

Additional information

Original Russian Text © G.P. Grabovetskaya, I.P. Mishin, Yu.R. Kolobov, 2009, published in Izvestiya VUZ. Poroshkovaya Metallurgiya i Funktsional’nye Pokrytiya, 2009, No. 2, pp. 38–43.

About this article

Cite this article

Grabovetskaya, G.P., Mishin, I.P. & Kolobov, Y.R. The effect of dispersion hardening on the regularities and mechanisms of the creep of copper with submicron grain sizes. Russ. J. Non-ferrous Metals 50, 540–544 (2009). https://doi.org/10.3103/S1067821209050204

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821209050204

Key words

Navigation