Skip to main content
Log in

Phase composition of spinel melts obtained during flash smelting of the mineral chalcopyrite

  • Metallurgy of Non-Ferrous Metals
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

With the HSC Chemistry ver. 4.1 program software, the possibility of obtaining oxidic and spinel phases during the oxidation of chalcopyrite is evaluated and the equilibrium compositions of the oxidized product in the temperature range from 1000 to 1800 K are calculated. For qualitative and quantitative estimation of the phases presenting in the oxidized product, an experiment with chalcopyrite mineral (fraction <100 μm) in a laboratory furnace simulating the flash smelting process at the temperature 973 K has been carried out. The phases obtained after the oxidation of the sulfide particles are identified with the help of x-ray phase analysis. For qualitative and quantitative estimation, determination of the phases is undertaken: electron probe microanalysis (EPMA) and Mössbauer spectroscopy along with the applied chemical analysis. It is established that the contents of copper and iron oxides and spinel phases in the oxidized product are close to the equilibrium composition corresponding to the average combustion temperature of the sulfide particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Makipirtti S., The First International Flash Smelting Congress, Finland, 1972, pp. 221–293.

  2. Kemori, N., Denholm, W.T., Kurokawa, H., Metal. Trans. B, 1989, vol. 20B, pp. 327–336.

    Article  CAS  Google Scholar 

  3. Jorgensen, F.R.A., Proc. Australas. Inst. Min. Metall., 1983, no. 288, pp. 37–46.

  4. Hagni, R.D., Vierrether, C.B., and Sohn, H.Y., Metal. Trans. B, 1988, vol. 19B, pp. 719–729.

    Article  CAS  Google Scholar 

  5. Kang, J.S. and Pyun, S.I., Trans. Inst. Min. Metall. C, 1988, vol. 97, pp. C198–C206.

    Google Scholar 

  6. Fagerlung, K., Jalkanen, H., Nurmi, P., and Taskinen, P., Abstracts of Papers, EPD Congress, The Minerals, Metals, and Materials Society, 1997, pp. 635–647.

  7. Peuraniemi, E.J. and Jokilaakso, A., Abstracts of Papers, EPD Congress, The Minerals, Metals, and Materials Society, 2000, pp. 173–187.

  8. Stefanova, V., Genevski, K., and Stefanov, B., Can. Met. Quart., 2004, vol. 43, no. 1, pp. 75–88.

    CAS  Google Scholar 

  9. Stefanov, B., Krumova, D., and Stefanova, V., Abstracts of Papers, Proc. 9th Int. Metallurgy and Materials Congress, Istanbul, pp. 11–15.

  10. Ahokainen, T., Jokilaakso, A., Vaarno, J., and Jarvi, J., Abstracts of Papers, Int. Conference on CFD in Mineral & Metal Processing and Power Generation, CSIRO, Australia: 1997, pp. 213–221.

    Google Scholar 

  11. Ahokainen, T. and Joiklaakso, A., Can. Met. Quart., 1998, vol. 37, nos. 3–4, pp. 275–283.

    Article  CAS  Google Scholar 

  12. Adams, J.B.R., Davis, K.A., Heap, M.P., and Sarofim, A.F., Abstracts of Papers, 4th Int. Conf. Copper 99-Cobre 99, Phoenix, AZ, 1999.

  13. Vaarno, J., Järvy, J., Ahokainen, T., Laurila, T., and Taskinen, P., Abstracts of Papers, 3rd Int. Conf. on CFD in the Minerals and Process Industries, CSIRO, Melbourne: 2003, pp. 147–154.

    Google Scholar 

  14. Solnordal, B.S., Jorgensen, F.R.A., Koh, P.T.L., and Hunt, A., Abstracts of Papers, 3rd Int. Conf. on CFD in the Minerals and Process Industries, CSIRO, Melbourne: 2003, pp. 161–166.

    Google Scholar 

  15. Laurila, T., Oikari, R., Joutsenova, T., Mikkola, P., Ranki-Kilpinen, T., Taskinen, P., and Hernberg, R., Met. Mater. Trans. B, 2005, vol. 36B, pp. 201–208.

    Article  CAS  Google Scholar 

  16. Roine, A., Outokumpu HSC Chemistry for Windows, Version 4.0, Outokumpu Research Oy, Finland: 1999.

    Google Scholar 

  17. Kobakhidze, V.V., Talis, L.D., Kazhdan, A.A., Indenbaum, G.V., and Boinykh, N.M., Tsvetn. Met., 1991, no. 6, pp. 19–22.

  18. Razumov, I.M., Psevdoozhizhenie i pnevmotransport sypuchikh materialov (Fluidization and Pneumatic Transport of Loose Materials), Moscow: Khimiya, 1972.

    Google Scholar 

  19. Munro, M.D.H. and Themelis, N.J., Abstracts of Papers, Proc. Copper 91-Cobre 91 Int. Symp., 1991, no. 4, pp. 475–494.

  20. Jokilaakso, A.T., Suominen, R.O., Taskinen, P.A., and Lilius, K.R., Trans. Inst. Min. Met., 1991, pp. C79–C90.

  21. Parra, R., Fan, Y.H., and Wilkomirsky, I., Abstracts of Papers, 6th Int. Conf. on Molten Slags, Fluxes and Salts, Stockholm-Helsinki: 2000.

  22. Espinel, J.A., M.Sc. Thesis, Universidad de Concepcion, Escuela de Graduados, Marzo: 1985.

    Google Scholar 

  23. Kuzmann, E., Nagy, S., and Verses, A., UIPAC Tech. Rep., Pure Appl. Chem., 2003, vol. 75, no. 6, pp. 851–858.

    Google Scholar 

  24. Parfenov, V.V. and Nazipov, R.A., Inorg. Mater. (English Translation), 2002, vol. 38, no. 1, pp. 78–82.

    Article  CAS  Google Scholar 

  25. Plocek, J., Hutlova, A., Nižňansky, D., Buršik, J., Rehspringer, J.L. and Mička, Z., Abstracts of Papers, Conf. Nano’02, Brno: 2002.

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article was submitted by the authors in English.

About this article

Cite this article

Stefanova, V., Trifonov, Y. Phase composition of spinel melts obtained during flash smelting of the mineral chalcopyrite. Russ. J. Non-ferrous Metals 49, 148–155 (2008). https://doi.org/10.3103/S1067821208030048

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821208030048

Keywords

Navigation