S. M. Ali and S. D. Silvey, ‘‘A general class of coefficients of divergence of one distribution from another,’’ J. R. Stat. Soc. Series B Stat. Methodol. 28 (1), 131–142 (1996).
MathSciNet
MATH
Google Scholar
B. C. Arnold, N. Balakrishnan, and H. N. Nagaraja, Records (Wiley, New York, 1998).
Book
Google Scholar
A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, ‘‘Clustering with Bregman divergences,’’ J. Mach. Learn. Res. 6 (10), 1705–1749 (2005).
MathSciNet
MATH
Google Scholar
M. Basseville, ‘‘Divergence measures for statistical data processing-anannotated bibliography,’’ Signal Processing. 93 (4), 621–633 (2013).
Article
Google Scholar
L. M. Bregman, ‘‘The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming,’’ USSR Comput. Math. Math. Phys. 7 (3), 200–217 (1967).
MathSciNet
Article
Google Scholar
C. Carota, G. Parmigiani, and N. G. Polson, ‘‘Diagnostic measures for model criticism,’’ J. Am. Stat. Assoc. 91 (434), 753–762 (1996).
MathSciNet
Article
Google Scholar
J. H. Cha and J. Mi, ‘‘Some probability functions in reliability and their applications,’’ Nav. Res. Logist. 54 (2), 128–135 (2007).
MathSciNet
Article
Google Scholar
T. F. Cox and G. Czanner, ‘‘A practical divergence measure for survival distributions that can be estimated from Kaplan-Meier curves,’’ Stat. Med. 35 (14), 2406–2421 (2016).
MathSciNet
Article
Google Scholar
H. A. David and H. N. Nagaraja, Order Statistics, 3rd ed., Wiley, New Jersey, 2003).
Book
Google Scholar
A. Di Crescenzo and M. Longobardi, ‘‘A measure of discrimination between past lifetime distributions,’’ Stat. Probab. Lett. 67 (2), 173–182 (2004).
MathSciNet
Article
Google Scholar
N. Ebrahimi and S. Kirmani, ‘‘A measure of discrimination between two residual life-time distributions and its applications,’’ Ann. Inst. Stat. Math. 48 (2),257–265 (1996a).
MathSciNet
Article
Google Scholar
N. Ebrahimi and S. Kirmani, ‘‘A characterisation of the proportional hazards model through a measure of discrimination between two residual life distributions,’’ Biometrika. 83 (1), 233–235 (1996b).
MathSciNet
Article
Google Scholar
A. Fischer, ‘‘Quantization and clustering with Bregman divergences,’’ J. Multivar. Anal. 101 (9), 2207–2221 (2010).
MathSciNet
Article
Google Scholar
R. C. Gupta and S. Kirmani, ‘‘Closure and monotonicity properties of nonhomogeneous poisson processes and record values,’’ Probab. Eng. Inf. Sci. 2 (4), 475–484 (1988).
Article
Google Scholar
S. Kullback and R. A. Leibler, ‘‘On information and sufficiency,’’ Ann. Math. Stat. 22 (1), 79–86 (1951).
MathSciNet
Article
Google Scholar
C. D. Lai and M. Xie, Stochastic ageing and dependence for reliability, Springer Science and Business Media, 2006.
MATH
Google Scholar
N. J. Lynn and N. D. Singpurwalla, ‘‘[Burn-in]: Comment: ‘‘burn-in’’ makes us feel good,’’ Stat. Sci. 12 (1), 13–19 (1997).
Google Scholar
Z. Mansourvar and M. Asadi, ‘‘An extension of the Cox-Czanner divergence measure to residual lifetime distributions with applications,’’ Statistics. 54 (6), 1311–1328 (2020).
MathSciNet
Article
Google Scholar
G. McLachlan and D. Peel, Finite Mixture Models Wiley, 2004.
MATH
Google Scholar
N. Misra, J. Francis, and S. Naqvi, ‘‘Some sufficient conditions for relative aging of life distributions,’’ Probab. Eng. Inf. Sci. 31 (1), 83–99 (2017).
MathSciNet
Article
Google Scholar
J. Navarro, Y. del Águila, M. A. Sordo, and A. Suárez-Llorens, ‘‘Preservation of reliability classes under the formation of coherent systems,’’ Appl. Stoch. Models Bus. Ind. 30 (4), 444–454 (2014).
MathSciNet
Article
Google Scholar
J. Navarro, Y. Del Águila, M. A. Sordo, and A. Suárez-Llorens, ‘‘Preservation of stochastic orders under the formation of generalized distorted distributions. applications to coherent systems,’’ Methodol. Comput. Appl. 18 (2), 529–545 (2016).
MathSciNet
Article
Google Scholar
F. Nielsen and R. Nock, ‘‘On the chi square and higher-order chi distances for approximating f-divergences,’’ IEEE Signal Process. Lett. 21 (1), 10–13 (2013).
Article
Google Scholar
M. Nikulin, ‘‘Hellinger distance,’’ hazewinkel, michiel, encyclopedia of mathematics,’’ Springer, Berlin, 2001. https://doi.org/10:1361684-1361686.
Google Scholar
I. Sason and S. Verdu, ‘‘f-Divergence inequalities,’’ Trans. Inf. Theory 62 (11), 5973–6006 (2016).
MathSciNet
Article
Google Scholar
P. Schlattmann, Medical Applications of Finite Mixture Models, Springer, 2009.
MATH
Google Scholar
D. Sengupta and J. V. Deshpande, ‘‘Some results on the relative ageing of two life distributions,’’ J. Appl. Probab. 31 (4), 991–1003 (1994).
MathSciNet
Article
Google Scholar
M. Shaked and J. G. Shanthikumar, Stochastic orders, Springer Science and Business Media, 2007.
Book
Google Scholar
G. C. Tiao and G. E. Box, ‘‘Some comments on ‘‘Bayes’’ estimators,’’ Am. Stat. 27 (1), 12–14 (1973).
MathSciNet
Google Scholar
F. Vonta and A. Karagrigoriou, ‘‘Generalized measures of divergence in survival analysis and reliability,’’ J. Appl. Probab. 47 (1), 216–234 (2010).
MathSciNet
Article
Google Scholar