Skip to main content

Maxiset Point of View for Signal Detection in Inverse Problems

Abstract

This paper extends the successful maxiset paradigm from function estimation to signal detection in inverse problems. In this context, the maxisets do not have the same shape compared to the classical estimation framework. Nevertheless, we introduce a robust version of these maxisets allowing to exhibit tail conditions on the signals of interest. Under this novel paradigm we are able to compare direct and indirect testing procedures.

This is a preview of subscription content, access via your institution.

References

  1. J. Aston, F. Autin, G. Claeskens, J.-M. Freyermuth, and Ch. Pouet, “Minimax Optimal Procedures for Testing the Structure of Multidimensional Functions”, Appl. Comput. Harmonic Anal. 46 (2), 288–311 (2019).

    MathSciNet  Article  Google Scholar 

  2. F. Autin, “Maxiset for Density Estimation on ℝ”, Math. Methods Statist. 15 (2), 123–145 (2006).

    MathSciNet  Google Scholar 

  3. F. Autin, J.-M. Freyermuth, and R. von Sachs, “Combining Thresholding Rules: A New Way to Improve the Performance of Wavelet Estimators”, J. Nonparametric Statist. 24 (4), 905–922 (2012).

    MathSciNet  Article  Google Scholar 

  4. Y. Baraud, “Non-Asymptotic Minimax Rates of Testing in Signal Detection”, Bernoulli 8 (5), 577–606 (2002).

    MathSciNet  MATH  Google Scholar 

  5. C. Butucea, “Goodness-of-Fit Testing and Quadratic Functional Estimation from Indirect Observations”, Ann. Statist. 35 (5), 1907–1930 (2007).

    MathSciNet  Article  Google Scholar 

  6. L. Cavalier, Inverse Problems in Statistics, in Lecture Notes in Statistics, Vol. 203: Inverse Problems and High-Dimensional Estimation (Springer, Heidelberg, 2011), pp. 3–96.

    Google Scholar 

  7. M. Ermakov, “On Maxispace of Nonparametric Tests”, arXiv:1708.04985 (2018).

  8. T. Hohage and F. Weidling, “Characterizations of Variational Source Conditions, Converse Results, and Maxisets of Spectral Regularization Methods”, SIAMJ. Numer. Anal. 55 (2), 598–620 (2017).

    MathSciNet  Article  Google Scholar 

  9. Y. Ingster and I. Suslina, Nonparametric Goodness-of-Fit Testing under Gaussian Models, in Springer Science & Business Media (Springer, 2003), Vol. 169.

  10. Y. I. Ingster, T. Sapatinas, and I. A. Suslina, “Minimax Signal Detection in Ill-Posed Inverse Problems”, Ann. Statist. 40 (3), 1524–1549 (2012).

    MathSciNet  Article  Google Scholar 

  11. J. Johannes, S. Van Bellegem, and A. Vanhems, “Convergence Rates for Ill-Posed Inverse Problems with an Unknown Operator”, Econometric Theory 27 (3), 522–545 (2011).

    MathSciNet  Article  Google Scholar 

  12. G. Kerkyacharian and D. Picard, “Minimax or Maxisets?”, Bernoulli 8 (2), 219–253 (2002).

    MathSciNet  MATH  Google Scholar 

  13. C. Lacour and T. M. Pham Ngoc, “Goodness-of-Fit Test for Noisy Directional Data”, Bernoulli 20 (4), 2131–2168 (2014).

    MathSciNet  Article  Google Scholar 

  14. B. Laurent, J.-M. Loubes, and C. Marteau, “Testing Inverse Problems: A Direct or an Indirect Problem?”, J. Statist. Plann. Inference 141 (5), 1849–1861 (2011).

    MathSciNet  Article  Google Scholar 

  15. B. Laurent, J.-M. Loubes, and C. Marteau, “Non-Asymptotic Minimax Rates of Testing in Signal Detection with Heterogeneous Variances”, Electron. J. Statist. 6, 91–122 (2012).

    MathSciNet  Article  Google Scholar 

  16. V. Rivoirard and K. Tribouley, “The Maxiset Point of View for Estimating Integrated Quadratic Functionals”, Statist. Sinica 18 (1), 255–279 (2008).

    MathSciNet  MATH  Google Scholar 

  17. A. V. Tsybakov, Introduction to Nonparametric Estimation, in Springer Series in Statistics (Springer, New York, 2009), Revised and extended from the 2004 French original, translated by Vladimir Zaiats.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. Autin, M. Clausel, J.-M. Freyermuth or C. Marteau.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Autin, F., Clausel, M., Freyermuth, JM. et al. Maxiset Point of View for Signal Detection in Inverse Problems. Math. Meth. Stat. 28, 228–242 (2019). https://doi.org/10.3103/S1066530719030037

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530719030037

Keywords

  • maxiset
  • inverse problems
  • signal detection

AMS 2010 Subject Classification

  • 62G20