J. Berkson, “Are There Two Regressions?”, J. Amer. Statist. Assoc. 45, 164–180 (1950).
Article
Google Scholar
J. Bovy, J. F. Hennawi, D. W. Hogg, A. D. Myers, J. A. Kirkpatrick, D. J. Schlegel, N. P. Ross, E. S. Sheldon, I. D. McGreer, D. P. Schneider, and B. A. Weaver, “Think outside the color box: Probabilistic target selection and the SDSS-XDQSO Quasar targeting catalog”, The Astrophysical Journal 729(2), #141 (2011).
Article
Google Scholar
R. J. Carroll, D. Rupport, L. A. Stefanski, and C. M. Crainiceanu, Measurement Error in Nonlinear Models, A Modern Perspective (Chapman and Hall, New York, 2006), 2nd ed..
Book
Google Scholar
R. J. Carroll, A. Delaigle, and P. Hall, “Nonparametric Prediction in Measurement Error Models”, J. Amer. Statist. Assoc. 104, 993–1003 (2009).
MathSciNet
Article
Google Scholar
F. Comte and J. Kappus, “Density Deconvolution from Repeated Measurements without Symmetry Assumption on the Errors”, J. Multivar. Anal. 140, 31–46 (2015).
MathSciNet
Article
Google Scholar
A. Delaigle, “Nonparametric Density Estimation from Data with a Mixture of Berkson and Classical Errors”, Can. J. Statist. 35, 89–104 (2007).
MathSciNet
Article
Google Scholar
A. Delaigle, “An Alternative View of the Deconvolution Problem”, Statist. Sinica 18, 1025–1045 (2008).
MathSciNet
MATH
Google Scholar
R. B. Dingle, Asymptotic Expansions: Their Derivation and Interpretation (Academic Press Inc., London-New York, 1973).
MATH
Google Scholar
L. Du, C. Zou, and Z. Wang, “Nonparametric Regression Function Estimation for Errors-in-variables Models with Validation Data”, Statist. Sinica 21, 1093–1113 (2011).
MathSciNet
Article
Google Scholar
P. Geng and H. L. Koul, “Minimum Distance Model Checking in Berkson Measurement Error Models with Validation Data”, Test 28 (3), 879–899 (2019).
MathSciNet
Article
Google Scholar
A. Goldenshluger, “On Pointwise Adaptive Nonparametric Deconvolution”, Bernoulli 5, 907–925 (1999).
MathSciNet
Article
Google Scholar
A. Goldenshluger and O. Lepski, “Bandwidth Selection in Kernel Density Estimation: Oracle Inequality and Adaptive Minimax Optimality”, Ann. Statist. 39, 1608–1632 (2011).
MathSciNet
Article
Google Scholar
K. H. Kim, W. K. Härdle, and S.-K. Chao, “Simultaneous Inference for the Partially Linear Model with a Multivariate Unknown Function when the Covariates are Measured with Errors”, SFB 649 Discussion Papers SFB649DP2016-024 (Humboldt Univ., Berlin, Germany, 2016).
Google Scholar
C. Lacour and F. Comte, “Data-Driven Density Estimation in the Presence of Additive Noise with Unknown Distribution”, J. Roy. Statist. Soc., Ser. B, 73, 601–627 (2011).
MathSciNet
Article
Google Scholar
O. V. Lepski and V. G. Spokoiny, “Optimal Pointwise Adaptive Methods in Nonparametric Estimation”, Ann. Statist. 25, 2512–2546 (1997).
MathSciNet
Article
Google Scholar
J. P. Long, N. E. Karoui, and J. A. Rice, “Kernel Density Estimation with Berkson Error”, Canad. J. Statist. 44, 142–160 (2016).
MathSciNet
Article
Google Scholar
A. Meister, Deconvolution Problems in Nonparametric Statistics (Springer, New York, 2009).
Book
Google Scholar
E. A. Robinson, Seismic Inversion and Deconvolution: Part B: Dual-Sensor Technology (Elsevier, Oxford, 1999).
Google Scholar
A. B. Tsybakov, Introduction to Nonparametric Estimation (Springer, New York, 2009).
Book
Google Scholar
L. Wang, “Estimation of Nonlinear Berkson-type Measurement Error Models”, Statist. Sinica 13, 1201–1210 (2003).
MathSciNet
MATH
Google Scholar
L. Wang, “Estimation of Nonlinear Models with Berkson Measurement Errors”, Ann. Statist. 32, 2559–2579 (2004).
MathSciNet
Article
Google Scholar
C. B. Wason, J. L. Black, and G. A. King, “Seismic Modeling and Inversion”, Proc. IEEE. 72, 1385–1393 (1984).
Article
Google Scholar
R. Wong, Asymptotic Approximations of Integrals (SIAM, Philadelphia, 2001).
Book
Google Scholar