M. G. Akritas and I. van Keilegom, “Nonparametric Estimation of the Residual Distribution”, Scandinavian J. Statist. 28, 549–567 (2001).
MathSciNet
Article
MATH
Google Scholar
M. Bertero, P. Boccacci, G. Desiderà, and G. Vicidomini, “Image Deblurring with Poisson Data: From Cells to Galaxies”, Inverse Problems 25(12), 123006, 26 (2009).
MathSciNet
Article
MATH
Google Scholar
P. J. Bickel and M. Rosenblatt, “On Some Global Measures of the Deviations of Density Function Estimates”, Ann. Statist. 1, 1071–1095 (1973).
MathSciNet
Article
MATH
Google Scholar
N. Bissantz, J. Chown, and H. Dette, “Regularization Parameter Selection in Inidirect Regression by Residual Based Bootstrap”, Statist. Sinica (2018) (in press).
N. Bissantz, T. Hohage, A. Munk, and F. Ruymgaart, “Convergence Rates of General Regularization Methods for Statistical Inverse Problems”, SIAM J. Numerical Anal. 45, 2610–2636 (2007).
MathSciNet
Article
MATH
Google Scholar
N. Bissantz and H. Holzmann, “Asymptotics for Spectral Regularization Estimators in Statistical Inverse Problems”, Comput. Statist. 28, 435–453 (2013).
MathSciNet
Article
MATH
Google Scholar
G. Blanchard and N. Mücke, “Optimal Rates for Regularization of Statistical Inverse Learning Problems”, Foundations Comput. Math. 18(4), 971–1013 (2018).
MathSciNet
Article
MATH
Google Scholar
M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1970).
Google Scholar
T. Buzug, Computed Tomography. From Photon Statistics to Modern Cone-Beam CT (Springer-Verlag, Berlin-Heidelberg, 2008).
Google Scholar
R. J. Carroll, A. Delaigle, and P. Hall, “Non-parametric Regression Estimation from Data Contaminated by a Mixture of Berkson and Classical Errors”, J. Roy. Statist. Soc.: Ser. B, Statist. Methodol. 69, 859–878 (2007).
MathSciNet
Article
Google Scholar
L. Cavalier, “Asymptotically Efficient Estimation in a Problem Related to Tomography”, Math. Methods Statist. 7, 445–456 (1999).
MathSciNet
MATH
Google Scholar
L. Cavalier, “Efficient Estimation of a Density in a Problem of Tomography”, Ann. Statist. 28, 630–647 (2000).
MathSciNet
Article
MATH
Google Scholar
L. Cavalier, “Nonparametric Statistical Inverse Problems”, Inverse Problems 24, 034004, 19 (2008).
MathSciNet
Article
MATH
Google Scholar
L. Cavalier and Yu. Golubev, “Risk Hull Method and Regularization by Projections of Ill-posed Inverse Problems”, Ann. Statist. 34, 1653–1677 (2006).
MathSciNet
Article
MATH
Google Scholar
L. Cavalier and A. Tsybakov, “Sharp Adaptation for Inverse Problems with Random Noise”, Probab. Theory and Related Fields 123(3), 323–354 (2002).
MathSciNet
Article
MATH
Google Scholar
B. Colling and I. van Keilegom, “Goodness-of-Fit Tests in Semiparametric Transformation Models”, TEST 25(2), 291–308 (2016).
MathSciNet
Article
MATH
Google Scholar
S. R. Deans, The Radon Transform and some of its Applications (Wiley, New York, 1983).
MATH
Google Scholar
A. Delaigle and P. Hall, “Estimation of Observation-Error Variance in Errors-in-Variables Regression”, Statist. Sinica 21, 103–1063 (2011).
MathSciNet
MATH
Google Scholar
A. Delaigle, P. Hall, and F. Jamshidi, “Confidence Bands in Non-parametric Errors-in-Variables Regression”, J. Roy. Statist. Soc.: Ser. B, Statist. Methodology 77 (2014).
H. Dette, N. Neumeyer, and I. van Keilegom, “A New Test for the Parametric Form of the Variance Function in Non-parametric Regression”, J. Roy. Statist. Soc.: Ser. B, Statist. Methodology 69(5), 903–917 (2007).
MathSciNet
Article
Google Scholar
H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems, in Mathematics and its Applications, (Kluwer Academic Publishers Group, Dordrecht, 1996), Vol. 375.
Google Scholar
S. Helgason, Integral Geometry and Radon Transforms (Springer, New York, 2011).
Book
MATH
Google Scholar
T. Hotz, P. Marnitz, R. Stichtenoth, L. Davies, Z. Kabluchko, and A. Munk, “Locally Adaptive Image Denoising by a Statistical Multiresolution Criterion”, Comput. Statist. Data Anal. 56, 543–558 (2012).
MathSciNet
MATH
Google Scholar
A. J. E. M. Janssen, “Zernike Expansion of Derivatives and Laplacians of the Zernike Circle Polynomials”, J. Opt. Soc. Am. A 31(7), 1604–1613 (2014).
Article
Google Scholar
I. M. Johnstone and B. W. Silverman, “Speed of Estimation in Positron Emission Tomography and Related Inverse Problems”, Ann. Statist. 18(1), 251–280 (1990).
MathSciNet
Article
MATH
Google Scholar
J. Kaipio and E. Somersalo, Statistical and Computational Inverse Problems (Springer, Berlin, 2010).
MATH
Google Scholar
K. Kato and Y. Sasaki, Uniform Confidence Bands for Nonparametric Errors-in-Variables Regression, arXiv:1702.03377v3 (2017).
G. Kerkyacharian, E. Le Pennec, and D. Picard, “Radon Needlet Thresholding”, Bernoulli 18(2), 391–433 (2012).
MathSciNet
Article
MATH
Google Scholar
G. Kerkyacharian, G. Kyriazis, E. Le Pennec, P. Petrushev, and D. Picard, “Inversion of Noisy Radon Transform by SVD Based Needlets”, Appl. Comput. Harmonic Anal. 28(1), 24–45 (2010).
MathSciNet
Article
MATH
Google Scholar
E. V. Khmaladze and H. L. Koul, “Goodness-of-Fit Problem for Errors in Nonparametric Regression: Distribution Free Approach”, Ann. Statist. 37(6A), 3165–3185 (2009).
MathSciNet
Article
MATH
Google Scholar
A. P. Korostelev and A. B. Tsybakov, Minimax Theory of Image Reconstruction, in Lecture Notes in Statistics (Springer-Verlag, New York, 1993), Vol. 82.
Google Scholar
H. L. Koul and W. Song, “Regression Model Checking with Berkson Measurement Errors”, J. Statist. Plann. Inference 138, 1615–1628 (2008).
MathSciNet
Article
MATH
Google Scholar
H. L. Koul and W. Song, “Minimum Distance Regression Model Checking with Berkson Measurement Errors”, Ann. Statist. 37, 132–156 (2009).
MathSciNet
Article
MATH
Google Scholar
V. Lakshminarayanan and A. Fleck, “Zernike Polynomials: A Guide”, J. Modern Optics 58(7), 545–561 (2011).
Article
Google Scholar
B. A. Mair and F. H. Ruymgaart, “Statistical Inverse Estimation in Hilbert Scales”, SIAMJ. Appl. Math. 56(5), 1424–1444 (1996).
MathSciNet
Article
MATH
Google Scholar
J. C. Mason and D. Handscomb, Chebyshev Polynomials (A CRC Press Company, London, 2002).
Book
MATH
Google Scholar
U. Müller, A. Schick, and W. Wefelmeyer, “Estimating the Error Distribution Function in Semiparametric Additive Regression Models”, J. Statist. Plann. Inference 142, 552–566 (2012).
MathSciNet
Article
MATH
Google Scholar
F. Natterer, “Computerized Tomography with Unknown Sources”, SIAM J. Appl. Math. 43(5), 1201–1212 (1983a).
MathSciNet
Article
MATH
Google Scholar
F. Natterer, The Mathematics of Computerized Tomography (Teubner, Stuttgart; Wiley, Chichester; 1986).
MATH
Google Scholar
F. Natterer and F. Wübbelling, Mathematical Methods in Image Reconstruction (SIAM, Philadelphia, 2001).
Book
Google Scholar
S. H. Nawab, A. S. Willsky, and A. V. Oppenheim, Signals and Systems (Prentice Hall, New Jersey, 1996).
Google Scholar
N. Neumeyer, Bootstrap Procedures for Empirical Processes of Nonparametric Residuals (Ruhr-Universität, Bochum, 2006), habilitation thesis. https://www.math.uni-hamburg.de/home/neumeyer/habil.ps
Google Scholar
N. Neumeyer, “Smooth Residual Bootstrap for Empirical Processes of Non-parametric Regression Residuals”, Scandinavian J. Statist. 36(2), 204–228 (2009).
MathSciNet
Article
MATH
Google Scholar
N. Neumeyer and I. van Keilegom, “Estimating the Error Distribution in Nonparametric Multiple Regression with Applications to Model Testing”, J. Multivariate Anal. 101(5), 1067–1078 (2010).
MathSciNet
Article
MATH
Google Scholar
J. P. Romano and A. F. Siegel, Counterexamples in Probability and Statistics (Chapman and Hall, New York, 1986).
MATH
Google Scholar
S. Saitoh, “Integral Transforms, Reprodücing Kernels and their Applications” (Longman, Harlow, 1997).
MATH
Google Scholar
B. W. Silverman, “Weak and Strong Uniform Consistency of the Kernel Estimate of a Density and its Derivatives”, Ann. Statist. 6(1), 177–184 (1978).
MathSciNet
Article
MATH
Google Scholar
A. W. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes. With Applications to Statistics, in Springer Series in Statistics (Springer, New York, 1996).
MATH
Google Scholar
C. R. Vogel, Computational Methods for Inverse Problems (SIAM, Bozeman, 2002).
Book
MATH
Google Scholar
F. Zernike, “Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrast-methode”, Physica 1(8), 689–704 (1934).
Article
MATH
Google Scholar
J. Zhang, Z. Feng, and X. Wang, “A Constructive Hypothesis Test for the Single-Index Models with Two Groups”, Ann. Inst. Statist. Math. 70(5), 1077–1114 (2018).
MathSciNet
Article
MATH
Google Scholar