Skip to main content
Log in

The Deficiency Introduced by Resampling

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

When the classical nonparametric bootstrap is implemented by a Monte-Carlo procedure one resamples values from a sequence of, typically, independent and identically distributed ones. But what happens when a decision has to be taken based on such resampled values? One way to quantify the loss of information due to this resampling step is to consider the deficiency distance, in the sense of Le Cam, between a statistical experiment of n independent and identically distributed observations and the one consisting of m observations taken from the original n by resampling with replacement. By comparing with an experiment where only subsamplingwith a random subsampling size has been performed one can bound the deficiency in terms of the amount of information contained in additional observations. It follows for certain experiments that the deficiency distance is proportional to the expected fraction of observations missed when resampling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Adamski, “On the Relations between Continuous and Nonatomic Measures”, Math. Nachr. 99, 55–60 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Erdõs and A. Rényi, “On a Classical Problem of Probability Theory”, Magyar Tud. Akad. Mat. Kutató Int. Közl. 6, 215–220 (1961).

    MathSciNet  MATH  Google Scholar 

  3. M. Falk and F. Marohn, “On the Loss of Information due to Nonrandom Truncation”, J. Multivar. Anal. 72, 1–21 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Genon-Catalot and C. Larédo, “Asymptotic Equivalence of Nonparametric Diffusion and Euler Scheme Experiments”, Ann. Statist. 42, 1145–1165 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Greenberg and M. Mohri, “Tight Lower Bound on the Probability of a Binomial Exceeding its Expectation”, Statist. Probab. Lett. 86, 91–98 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Helgeland, “Additional Observations and Statistical Information in the Case of 1-Parameter Exponential Distributions”, Z. Wahrsch. undVerw.Gebiete 59, 77–100 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Janssen and R.-D. Reiss, “Comparison of Location Models ofWeibull Type Samples and Extreme Value Processes”, Probab. Theory Rel. Fields 78, 273–292 (1988).

    Article  MATH  Google Scholar 

  8. A. Janssen and F. Marohn, “On Statistical Information of Extreme Order Statistics, Local Extreme Value Alternatives, and Poisson Point Processes”, J.Multivar. Anal. 48, 1–30 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  9. N. L. Johnson A. W. Kemp and S. Kotz, Univariate Discrete Distributions, 2nd. ed. (Wiley, New York, 2005).

    Book  MATH  Google Scholar 

  10. V. Konakov E. Mammen and J. Woerner, “Statistical Convergence of Markov Experiments to Diffusion Limits”, Bernoulli 20, 623–644 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  11. L. Le Cam, “Sufficiency and Approximate Sufficiency”, Ann. Math. Statist. 35, 1419–1455 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Le Cam, “On the Information Contained in Additional Observations”, Ann. Statist. 2, 630–649 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Mammen, “The Statistical InformationContained in AdditionalObservations”, Ann. Statist. 14, 665–678 (1986).

    Article  MathSciNet  Google Scholar 

  14. E. Mammen, When Does Bootstrap Work? Asymptotic Results and Simulations (Springer, New York, 1992).

    Book  MATH  Google Scholar 

  15. E. Mariucci, “Asymptotic Equivalence of Discretely Observed Diffusion Processes and Their Euler Scheme: Small Variance Case”, Statist. Inference Stoch. Process. 19, 71–91 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  16. F. Marohn, “Global Sufficiency of Extreme Order Statistics in Location Models of Weibull Type”, Probab. Theory Rel. Fields 88, 261–268 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Marohn, “Neglecting Observations in Gaussian Sequences of Statistical Experiments”, Statist. Decisions 13, 83–92 (1995).

    MathSciNet  MATH  Google Scholar 

  18. G. Milstein and M. Nussbaum, “Diffusion Approximation for Nonparametric Autoregression”, Probab. Theory Rel. Fields 112, 535–543 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Putter and W. R. van Zwet, “Resampling: Consistency of Substitution Estimators”, Ann. Statist. 24, 2297–2318 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  20. R.-D. Reiss, “A New Proof of the Approximate Sufficiency of Sparse Order Statistics”, Statist. Probab. Lett. 4, 233–235 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  21. R.-D. Reiss M. Falk and M. Weller, “Inequalities for the Relative Sufficiency between Sets of Order Statistics”, in Statistical Extremes and Applications (Springer, Dordrecht, 1984), pp. 597–610.

    Chapter  Google Scholar 

  22. E. Schechter, Handbook of Analysis and Its Foundations (Academic Press, San Diego, 1997).

    MATH  Google Scholar 

  23. S. Y. T. Soon, “Binomial Approximation for Dependent Indicators”, Statist. Sinica 6, 703–714 (1996).

    MathSciNet  MATH  Google Scholar 

  24. H. Strasser, “Towards a Statistical Theory of Optimal Quantization”, in Data Analysis: Scientific Modeling and Practical Application (Springer, Berlin–Heidelberg, 2000), pp. 369–383.

    Chapter  Google Scholar 

  25. E. N. Torgersen, “Comparison of Experiments when the Parameter Space is Finite”, Z.Wahrsch. und Verw. Gebiete 16, 219–249 (1970).

    Article  MATH  Google Scholar 

  26. E. N. Torgersen, “Comparison of Translation Experiments”, Ann. Math. Statist. 43, 1383–1399 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  27. E. N. Torgersen, “Measures of Information Based on Comparison with Total Information and with Total Ignorance”, Ann. Statist. 9, 638–657 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  28. E. N. Torgersen, Comparison of Statistical Experiments, in Encyclopedia of Mathematics and its Applications (Cambridge Univ. Press, Cambridge, 1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Wiklund.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiklund, T. The Deficiency Introduced by Resampling. Math. Meth. Stat. 27, 145–161 (2018). https://doi.org/10.3103/S1066530718020047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530718020047

Keywords

2010 Mathematics Subject Classification

Navigation