Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Asymptotic Analysis of the Jittering Kernel Density Estimator

Abstract

Jittering estimators are nonparametric function estimators for mixed data. They extend arbitrary estimators from the continuous setting by adding random noise to discrete variables. We give an in-depth analysis of the jittering kernel density estimator, which reveals several appealing properties. The estimator is strongly consistent, asymptotically normal, and unbiased for discrete variables. It converges at minimax-optimal rates, which are established as a by-product of our analysis. To understand the effect of adding noise, we further study its asymptotic efficiency and finite sample bias in the univariate discrete case. Simulations show that the estimator is competitive on finite samples. The analysis suggests that similar properties can be expected for other jittering estimators.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    I. A. Ahmad and P. B. Cerrito, “Nonparametric Estimation of Joint Discrete-Continuous Probability Densities with Applications”, J. Statist. Planning and Inference 41 (3), 349–364 (1994).

  2. 2.

    S. Efromovich, “Nonparametric Estimation of the Anisotropic Probability Density of Mixed Variables”, J. Multivar. Anal. 102 (3), 468–481 (2011).

  3. 3.

    U. Einmahl and D. M. Mason, “Uniform in Bandwidth Consistency of Kernel-Type Function Estimators,” Ann. Statist. 33 (3), 1380–1403, 06 (2005).

  4. 4.

    C. Genest, J. G. Nešlehová, and B. Rémillard, “Asymptotic Behavior of the Empirical Multilinear Copula Process under Broad Conditions”, J. Multivar. Anal. (2017).

  5. 5.

    P. Hall, J. Racine, and Q. Li, “Cross-Validation and the Estimation of Conditional Probability Densities”, J. Amer. Statist. Assoc. 99 (468), 1015–1026 (2004).

  6. 6.

    P. Hall et al., “Orthogonal SeriesMethods for Both Qualitative and Quantitative Data”, Ann. Statist. 11 (3), 1004–1007 (1983).

  7. 7.

    Y. Han, J. Jiao, and T. Weissman, “Minimax Estimation of Discrete Distributions under Loss”, IEEE Trans. on Information Theory 61 (11), 6343–6354 (2015).

  8. 8.

    T. Hayfield and J. S. Racine, “Nonparametric Econometrics: The np Package”, J. Statist. Software 27 (5), (2008).

  9. 9.

    I. Ibragimov and R. Khas’minskii, “Estimation of Distribution Density”, J. Soviet Math. 21 (1), 40–57 (1983).

  10. 10.

    C. G. G. Aitken and J. Aitchison, “Multivariate Binary Discrimination by the Kernel Method”, Biometrika 63 (3), 413–420 (1976).

  11. 11.

    Q. Li and J. Racine, “Nonparametric Estimation of Distributions with Categorical and Continuous Data”, J. Multivar. Anal. 86 (2), 266–292 (2003).

  12. 12.

    J. S. Marron, “Visual Understanding of Higher-Order Kernels”, J. Comput. and Graph. Statist. 3 (4), 447–458 (1994).

  13. 13.

    J. F. Monahan, Numerical Methods of Statistics. (Cambridge University Press, Cambridge, 2011).

  14. 14.

    T. Nagler, “A Generic Approach to Nonparametric Function Estimation with Mixed Data”, Statist. Probab. Lett., DOI 10.1016/j.spl.2018.02.040 (in press).

  15. 15.

    E. Parzen, “On Estimation of a Probability Density Function and Mode”, Ann.Math. Statist. 33 (3), 1065–1076, 09 (1962).

  16. 16.

    J. Racine and Q. Li, “Nonparametric Estimation of Regression Functions with Both Categorical and Continuous Data”, J. Econometrics 119 (1), 99–130 (2004).

  17. 17.

    M. Rosenblatt, “Remarks on Some Nonparametric Estimates of a Density Function”, Ann. Math. Statist. 27 (3), 832–837, 09 (1956).

  18. 18.

    D. W. Scott, “The Curse of Dimensionality and Dimension Reduction”, in Multivariate Density Estimation: Theory, Practice, and Visualization (Wiley, New York, 2008) pp. 195–217.

  19. 19.

    L. Simar, V. Zelenyuk, et al., To Smooth or not to Smooth? The Case of Discrete Variables in Nonparametric Regressions, in Working Paper Series (Center for Efficiency and Productivity Analysis, 2011).

  20. 20.

    C. J. Stone, “Optimal Rates of Convergence for Nonparametric Estimators”, Ann. Statist. 8 (6), 1348–1360, 11 (1980).

  21. 21.

    C. J. Stone, “Optimal Uniform Rate of Convergence for Nonparametric Estimators of a Density Function or Its Derivatives”, Recent Advances in Statist. 5 (1983).

  22. 22.

    A. Tsybakov, Introduction to Nonparametric Estimation, in Springer Series in Statist. (Springer, New York, 2008).

  23. 23.

    M. Wand, “Error Analysis for General Multivariate Kernel Estimators”, J. Nonparam. Statist. 2 (1), 1–15 (1992).

Download references

Author information

Correspondence to T. Nagler.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nagler, T. Asymptotic Analysis of the Jittering Kernel Density Estimator. Math. Meth. Stat. 27, 32–46 (2018). https://doi.org/10.3103/S1066530718010027

Download citation

Keywords

  • density
  • discrete
  • jittering
  • kernel
  • minimax
  • mixed data

2000 Mathematics Subject Classification

  • 62G07