Efficiency of exponentiality tests based on a special property of exponential distribution

Abstract

New goodness-of-fit tests for exponentiality based on a particular property of exponential law are constructed. Test statistics are functionals of U-empirical processes. The first of these statistics is of integral type, the second one is a Kolmogorov type statistic.We show that the kernels corresponding to our statistics are nondegenerate. The limiting distributions and large deviations of new statistics under the null hypothesis are described. Their local Bahadur efficiency for various parametric alternatives is calculated and is comparedwith simulated powers of new tests. Conditions of local optimality of new statistics in Bahadur sense are discussed and examples of “most favorable” alternatives are given. New tests are applied to reject the hypothesis of exponentiality for the length of reigns of Roman emperors which was intensively discussed in recent years.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, No. 55, Ed. by M. Abramowitz, I. A. Stegun (Courier Corporation, 1964).

  2. 2.

    M. Ahsanullah and G. G. Hamedani, Exponential Distribution: Theory and Methods (NOVA Science, New York, 2010).

    MATH  Google Scholar 

  3. 3.

    J. E. Angus, “Goodness-of-Fit Tests for Exponentiality Based on a Loss-of-Memory Type Functional Equation”, J. Statist. Plann. Infer. 6 (3), 241–251 (1982).

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    S. Asher, “A Survey of Tests for Exponentiality”, Commun. Statist.: Theory and Meth. 19 (5), 1811–1825 (1990).

    MathSciNet  Article  Google Scholar 

  5. 5.

    R. R. Bahadur, Some Limit Theorems in Statistics (SIAM, Philadelphia, 1971).

    Book  MATH  Google Scholar 

  6. 6.

    N. Balakrishnan and A. Basu, The Exponential Distribution: Theory,Methods and Applications (Gordon and Breach, Langhorne, PA, 1995).

    MATH  Google Scholar 

  7. 7.

    L. Baringhaus and N. Henze, “Tests of Fit for Exponentiality Based on a Characterization via the Mean Residual Life Function”, Statist. Papers, 41 (2), 225–236 (2000).

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    K. A. Doksum and B. S. Yandell, “Tests of Exponentiality”, Handbook of Statistics 4, 579–612 (1985).

    MathSciNet  Article  Google Scholar 

  9. 9.

    H. El Barmi and I. McKeague, “Empirical Likelihood-Based Tests for Stochastic Ordering”, Bernoulli 19 (1), 295–307 (2013).

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    J. Haywood and E. Khmaladze, “On Distribution-Free Goodness-of-Fit Testing of Exponentiality”, J. of Econometrics 143 (1), 5–18 (2008).

    MathSciNet  Article  Google Scholar 

  11. 11.

    R. Helmers, P. Janssen, and R. Serfling, “Glivenko–Cantelli Properties of Some Generalized Empirical DF’s and Strong Convergence of Generalized L-Statistics”, Probab. Theory Rel. Fields 79, 75–93 (1988).

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    N. Henze and S. G.Meintanis, “Goodness-of-Fit Tests Based on a New Characterization of the Exponential Distribution”, Commun. Statist.: Theory and Meth. 31 (9), 1479–1497 (2002).

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    N. Henze and S. G. Meintanis, “Recent and Classical Tests for Exponentiality: A Partial Review with Comparisons”, Metrika 61, 29–45 (2005).

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    W. Hoeffding, “A Class of Statistics with Asymptotically Normal Distribution”, Ann. Math. Statist. 19, 293–325 (1948).

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    P. L. Janssen, Generalized Empirical Distribution Functions with Statistical Applications (Limburgs Universitair Centrum, Diepenbeek, 1988).

    Google Scholar 

  16. 16.

    H. M. Jansen van Rensburg and J. W. H. Swanepoel, “A Class of Goodness-of-Fit Tests Based on a New Characterization of the Exponential Distribution”, J. Nonparam. Statist. 20 (6), 539–551 (2008).

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    V. Jevremović, “A Note onMixed Exponential Distribution with NegativeWeights”, Statist. Probab. Lett. 11 (3), 259–265 (1991).

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    M. Jovanović, B. Milos ević, Y. Y. Nikitin, M. Obradović, and K. Y. Volkova, “Tests of Exponentiality Based on Arnold–Villasenor Characterization and Their Efficiencies”, Comp. Statist. Data Anal. 90, 100–113 (2015).

    MathSciNet  Article  Google Scholar 

  19. 19.

    E. Khmaladze, R. Brownrigg, and J. Haywood, “Brittle Power: On Roman Emperors and Exponential Lengths of Rule”, Statist. Probab. Lett. 77, 1248–1257 (2007).

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    E. V. Khmaladze, Statistical Methods with Applications to Demography and Life Insurance (Chapman and Hall/CRC, 2013).

    Book  MATH  Google Scholar 

  21. 21.

    D. Kienast, Römische Kaisertabelle: Grundzüge römischen Kaiserchronologie (Wissenschaftliche Buchgesellschaft, Darmstadt, 1990).

  22. 22.

    V. S. Korolyuk and Yu. V. Borovskikh, Theory of U-Statistics (Kluwer, Dordrecht, 1994).

    Book  MATH  Google Scholar 

  23. 23.

    I. Kotlarski, “On Characterizing the Gamma and the Normal Distribution”, Pacific J. of Math. 20 (1), 69–76 (1967).

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    S. Kotz and F. W. Steutel, “Note on a Characterization of Exponential Distributions”, Statist. Probab. Lett. 6, 201–203 (1988).

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    A. Marshall and I. Olkin, Life Distributions (Springer, New York, 2007).

    MATH  Google Scholar 

  26. 26.

    J. G. Mauldon, “Characterizing Properties of Statistical Distributions”, Quarterly J. Math., Oxford Series, 7, 155–160 (1956).

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    B. Milos ević, “Asymptotic Efficiency of New Exponentiality Tests Based on a Characterization”, Metrika, 79 (2), 221–236 (2016).

    MathSciNet  Article  Google Scholar 

  28. 28.

    P. A. P. Moran, “The Random Division of an Interval”, J. Roy. Statist. Soc. B 13, 147–160 (1951).

    MathSciNet  MATH  Google Scholar 

  29. 29.

    P. Nabendu, J. Chun, and R. Crouse, Handbook of Exponential and Related Distributions for Engineers and Scientists (Chapman and Hall, 2002).

    Google Scholar 

  30. 30.

    Ya. Nikitin, Asymptotic Efficiency of Nonparametric Tests (Cambridge Univ. Press, New York, 1995).

    Book  MATH  Google Scholar 

  31. 31.

    Ya. Yu. Nikitin, “Bahadur Efficiency of a Test of Exponentiality Based on a Loss of Memory Type Functional Equation”, J. Nonparam. Statist. 6, 13–26 (1996).

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Ya. Yu. Nikitin, “Large Deviations of U-Empirical Kolmogorov–Smirnov Tests, and Their Efficiency”, J. Nonparam. Statist. 22, 649–668 (2010).

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Ya. Yu. Nikitin and I. Peaucelle, “Efficiency and LocalOptimality of Distribution-Free Tests Based on U- and V -Statistics”, Metron LXII, 185–200 (2004).

    Google Scholar 

  34. 34.

    Ya. Yu. Nikitin and E. V. Ponikarov, “Rough Large Deviation Asymptotics of Chernoff Type for von Mises Functionals and U-Statistics”, Proc. of St.Petersburg Math. Society 7, 124–167 (1999); Engl. transl. in AMS Transl., Ser. 2 203, 107–146 (2001).

    MathSciNet  Google Scholar 

  35. 35.

    Ya. Yu. Nikitin and A. V. Tchirina, “Bahadur Efficiency and Local Optimality of a Test for the Exponential Distribution Based on the Gini Statistic”, Statist. Meth. and Appl. 5, 163–175 (1996).

    MATH  Google Scholar 

  36. 36.

    Ya. Yu. Nikitin and A. V. Tchirina, “Lilliefors Test for Exponentiality: Large Deviations, Asymptotic Efficiency and Conditions of Local Optimality”, Math. Methods of Statistics 16 (1), 16–24 (2007).

    MathSciNet  Article  MATH  Google Scholar 

  37. 37.

    Ya. Yu. Nikitin and K. Yu. Volkova, “Asymptotic Efficiency of Exponentiality Tests Based on Order Statistics Characterization”, GeorgianMath. J. 17 (4), 749–763 (2010).

    MathSciNet  MATH  Google Scholar 

  38. 38.

    Ya. Yu. Nikitin and I. K. Piskun, “Testing Exponentiality with Application to Historic Data.” in Proc. Workshops on Inverse Problems, Data, Math. Statist. and Ecology, Ed. by V. Kozlov, M. Ohlson, and D. von Rosen (Linköping University Electronic Press, 2011), pp. 59–65. Permanent link: http://liudivaportal. org/smash/get/diva2:431256/FULLTEXT02pdf

    Google Scholar 

  39. 39.

    Ya. Yu. Nikitin and K. Yu. Volkova, “Exponentiality Tests Based on Ahsanullah’s Characterization and Their Efficiencies”, J. Math. Sci. 204 (1), 42–54 (2015).

    MathSciNet  Article  MATH  Google Scholar 

  40. 40.

    H. A. Noughabi and N. R. Arghami, “Testing Exponentiality Based on Characterizations of the Exponential Distribution”, J. Statist. Comp. and Simul. 81 (11), 1641–1651 (2011).

    MathSciNet  Article  MATH  Google Scholar 

  41. 41.

    B. W. Silverman, “Convergence of a Class of Empirical Distribution Functions of Dependent Random Variables”, Ann. Probab. 11, 745–751 (1983).

    MathSciNet  Article  MATH  Google Scholar 

  42. 42.

    K. Y. Volkova, “On Asymptotic Efficiency of Exponentiality Tests Based on Rossberg’s Characterization”, J. Math. Sci. (N.Y.) 167 (4), 486–494 (2010).

    MathSciNet  Article  MATH  Google Scholar 

  43. 43.

    H. S. Wieand, “A Condition under which the Pitman and Bahadur Approaches to Efficiency Coincide”, Ann. Statist. 4, 1003–1011 (1976).

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ya. Yu. Nikitin.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nikitin, Y.Y., Volkova, K.Y. Efficiency of exponentiality tests based on a special property of exponential distribution. Math. Meth. Stat. 25, 54–66 (2016). https://doi.org/10.3103/S1066530716010038

Download citation

Keywords

  • testing of exponentiality
  • large deviations
  • U-statistics
  • Bahadur efficiency

2000 Mathematics Subject Classification

  • 60F10
  • 62F03
  • 62G20
  • 62G30