Skip to main content
Log in

Another look at bootstrapping the student t-statistic

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

Let X, X 1, X 2, ... be a sequence of i.i.d. random variables with mean µ = EX. Let {v (n)1 , ..., v (n) n } n=1 be vectors of nonnegative random variables (weights), independent of the data sequence {X 1, ..., X n } n=1 , and put m n = Σ n i=1 v (n) i . Consider v (n)1 X 1, ..., v (n) n X n , a bootstrap sample, resulting from re-sampling or stochastically re-weighing the random sample X 1, ..., X n , n ≥ 1. Put \(\bar X_n = \sum\nolimits_{i = 1}^n {X_i } /n\), the original sample mean, and define \(\bar X_{m_n }^* = \sum\nolimits_{i = 1}^n {v_i^{(n)} X_i /m_n }\), where m n := Σ n i=1 v (n) i , the bootstrap sample mean. Thus, \(\bar X_{m_n }^* - \bar X_n = \sum\nolimits_{i = 1}^n {\left( {v_i^{(n)} /m_n - 1/n} \right)X_i }\). Put V 2 n = Σ n i=1 (v (n) i /m n − 1/n)2 and let S 2 n , \(S_{m_n }^{*2}\) respectively be the original sample variance and the bootstrap sample variance. The main aim of this exposition is to study the asymptotic behavior of the bootstrapped t-statistics \(T_{m_n }^* : = (\bar X_{m_n }^* - \bar X_n )/(S_n V_n )\) and \(T_{m_n }^{**} : = \sqrt {m_n } (\bar X_{m_n }^* - \bar X_n )/S_{m_n }^*\) in terms of conditioning on the weights via assuming that, as n → ∞, max1≤in (v (n) i /m n − 1/n)2/V 2 n = o(1) almost surely or in probability on the probability space of the weights. In consequence of these maximum negligibility conditions on the weights, a characterization of the validity of this approach to the bootstrap is obtained as a direct consequence of the Lindeberg-Feller central limit theorem (CLT). This view of justifying the validity of bootstrapping i.i.d. observables is believed to be new. The need for it arises naturally in practice when exploring the nature of information contained in a random sample via re-sampling, for example. Conditioning on the data is also revisited for Efron’s bootstrap weights under conditions on n, m n as n → ∞ that differ from requiring m n /n to be in the interval [λ 1, λ 2] with 0 < λ 1 < λ 2 < ∞ as in Mason and Shao (2001). The validity of the bootstrapped t-intervals is established for both approaches to conditioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Arenal-Gutiérrez, C. Matrán, and J. A. Cuesta-Albertos, “On the Unconditional Strong Law of Large Numbers for the Bootstrap Mean”, Statist. Probab. Lett. 27, 49–60 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Arenal-Gutiérrez and C. Matrán, “A Zero-One Law Approach to the Central Limit Theorem for the Weighted Bootstrap Mean”, Ann. Probab. 24, 532–540 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  3. K. B. Athreya, “Strong Law for the Bootstrap”, Statist. Probab. Lett. 1, 147–150 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Csörgő and M. M. Nasari, “Asymptotics of Randomly Weighted u- and v-Statistics: Application to Bootstrap”, J. Multivar. Anal. 121, 176–192 (2013).

    Article  Google Scholar 

  5. S. Csörgő, “On the Law of Large Numbers for the Bootstrap Mean”, Statist. Probab. Lett. 14, 1–7 (1992).

    Article  MathSciNet  Google Scholar 

  6. S. Csörgő and A, Rosalsky, “A Survey of Limit Laws for Bootstrapped Sums”, International J. Math. and Math. Sci. 45, 2835–2861 (2003).

    Article  Google Scholar 

  7. S. Csörgő and D. M. Mason, “Bootstrapping Empirical Functions”, Ann. Statist. 17, 1447–1471 (1989).

    Article  MathSciNet  Google Scholar 

  8. A. DasGupta, Asymptotic Theory of Statistics and Probability (Springer, New York, 2008).

    MATH  Google Scholar 

  9. B. Efron, “Bootstrap Methods: Another Look at the Jackknife”, Ann. Statist. 7, 1–26 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Efron and R. Tibshirani, An Introduction to the Bootstrap (Chapman & Hall, New York-London, 1993).

    Book  MATH  Google Scholar 

  11. E. Giné, Lectures on Some Aspects of the Bootstrap. Ecole dÉté de Probabilités de Saint-Flour XXVI- 1996, Ed. by E. Giné, G. R. Grimmett, and L. Saloff-Coste in Lectures on Probability Theory and Statistics (1996).

    Google Scholar 

  12. E. Giné, F. Götze, and D. M. Mason, “When is the Student t-Statistic Asymptotically Normal?”, Ann. Probab. 25, 1514–1531 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Giné and J. Zinn, “Necessary Conditions for the Bootstrap of the Mean”, Ann. Statist. 17, 684–691 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Hájek, “Some Extensions of the Wald-Wolfowitz-Noether Theorem”, Ann. Math. Statist. 32, 506–523 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Hall, “On the Bootstrap and Confidence Intervals”, Ann. Statist. 14, 1431–1452 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  16. D. M. Mason and M. A. Newton, “A Rank Statistics Approach to the Consistency of a General Bootstrap”, Ann. Statist. 20, 1611–1624 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  17. D. M. Mason and Q. Shao, “Bootstrapping the Student t-Statistic”, Ann. Probab. 29, 1435–1450 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Morris, “Central Limit Theorems for Multinomial Sums”, Ann. Statist. 3, 165–188 (1975).

    Article  MathSciNet  Google Scholar 

  19. D. B. Rubin, “The Baysian Bootstrap”, Ann. Statist. 9, 130–134 (1981).

    Article  MathSciNet  Google Scholar 

  20. C. Weng, “On a Second-Order Asymptotic Property of the Bayesian Bootstrap Mean”, Ann. Statist. 17, 705–710 (1989).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Csörgő.

Additional information

Dedicated to the memory of Sándor Csörgő.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Csörgő, M., Martsynyuk, Y.V. & Nasari, M.M. Another look at bootstrapping the student t-statistic. Math. Meth. Stat. 23, 256–278 (2014). https://doi.org/10.3103/S1066530714040024

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530714040024

Keywords

2000 Mathematics Subject Classification

Navigation