Skip to main content
Log in

Some new perspectives in best approximation and interpolation of random data

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

A new notion of universally optimal experimental design is introduced, relevant from the perspective of adaptive nonparametric estimation. It is demonstrated that both discrete and continuous Chebyshev designs are universally optimal in the problem of fitting properly weighted algebraic polynomials to random data. The result is a direct consequence of the well-known relation between Chebyshev’s polynomials and the trigonometric functions.

Optimal interpolating designs in rational regression proved particularly elusive in the past. The question can be effectively handled using its connection to elliptic interpolation, in which the ordinary circular sinus, appearing in the classical trigonometric interpolation, is replaced by the Abel-Jacobi elliptic sinus sn(x, k) of a modulus k. First, it is demonstrated that — in a natural setting of equidistant design — the elliptic interpolant is never optimal in the so-called normal case k ∈ (−1, 1), except for the trigonometric case k = 0.

However, the equidistant elliptic interpolation is always optimal in the imaginary case kiℝ. Through a relation between elliptic and rational functions, the result leads to a long sought optimal design, for properly weighted rational interpolants. Both the poles and nodes of the interpolants can be conveniently expressed in terms of classical Jacobi’s theta functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. H. Abel, “Recherches sur les Fonctions Elliptiques”, J. für Reine Angevandte Mathematik 2, 101–181 (1827). English translation available in the MAA Digital Library at http://mathdl.maa.org/images/upload library/1/abeltranslation.pdf

    Article  MATH  Google Scholar 

  2. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, D.C., 1964).

    MATH  Google Scholar 

  3. N. I. Akhiezer, Elements of the Theory of Elliptic Functions (AMS, Providence, R.I., 1970).

    Google Scholar 

  4. W. Cauer, Synthesis of Linear Communication Networks (McGraw-Hill, New York, 1958).

    MATH  Google Scholar 

  5. H. Bateman and A. Erdélyi, Higher Transcendental Functions (McGraw-Hill, New York, 1955), Vol. 2.

    MATH  Google Scholar 

  6. Jaerin Cho, Optimal Design in Regression and Spline Smoothing, PhD Thesis (Queen’s University, Dept. Math. Statist., 2007).

    Google Scholar 

  7. J. Cho and B. Levit, “Cardinal Splines in Nonparametric Regression”, Math. Meth. Statist. 17, 19–34 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Cho and B. Levit, “Asymptotic Optimality of Periodic Spline Interpolation in Nonparametric Regression”, J. Statist. Theory and Practice 2, 465–474 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  9. S. Chowdhury, J. J. Soltis, and W. C. Miller, “Interpolation Using Elliptic Sine Function: A Digital Signal Processing Approach”, in Proc. 1999 IEEE Canadian Conf. on Electr. and Comp. Eng., Vol. 2, 714–719.

  10. J. L. Doob, Stochastic Processes (Wiley, New York, 1953).

    MATH  Google Scholar 

  11. I. I. Gikhman and A. V. Skorokhod, The Theory of Stochastic Processes (Springer, New York, 1974), Vol. I.

    Book  MATH  Google Scholar 

  12. I. S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products, 5th ed. (Academic Press, New York, 1994).

    MATH  Google Scholar 

  13. V. V. Fedorov, Theory of Optimal Experiments (Academic Press, New York, 1972).

    Google Scholar 

  14. I. A. Ibragimov and R. Z. Khasminski, Statistical Estimation: Asymptotic Theory (Springer, New York, 1981).

    MATH  Google Scholar 

  15. L. A. Imhof and W. J. Studden, “E-Optimal Designs for Rational Models”, Ann. Statist. 29, 763–783 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Karlin and W. J. Studden, Tchebycheff Systems: With Applications in Analysis and Statistics (Interscience, New York, 1966).

    MATH  Google Scholar 

  17. J. Kiefer and W. J. Studden, “Optimal Designs for Large Degree Polynomial Regression”, Ann. Statist. 4, 1113–1123 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Kiefer and J. Wolfowitz, “The Equivalence of Two Extremum Problems”, Canad. J. Math. 12, 363–366 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  19. A. N. Kolmogorov and A. P. Yushkevich, eds., Mathematics of the 19th Century: Geometry, Analytic Function Theory (Birkhäuser, Berlin, 1996).

    MATH  Google Scholar 

  20. L. D. Landau and E.M. Lifshitz, Mechanics (Pergamon Press, New York, 1976).

    Google Scholar 

  21. D. Lee, “On aMinimal Property of Cardinal and Periodic Lagrange Splines”, J. Approx. Theory 70, 335–338 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  22. O. Lepski and B. Levit, “Adaptive Minimax Estimation of Infinitely Differentiable Functions”, Math. Meth. Statist. 7, 123–156 (1998).

    MathSciNet  MATH  Google Scholar 

  23. B. Levit, “Minimax Revisited. I, II”, Math. Meth. Statist. 19, 283–297; 299–326 (2010).

    Article  MathSciNet  Google Scholar 

  24. D. J. Newman, “Rational Approximation to |x|”, Michigan Math. J. 11, 11–14 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Yu. Osipenko, Optimal Recovery of Analytic Functions (Nova Sci. Publ., New York, 2000).

    Google Scholar 

  26. I. J. Schoenberg, “On the Maxima of Certain Hankel Determinants and the Zeros of the Classical Orthogonal Polynomials”, Indag. Math. 21, 282–290 (1959).

    MathSciNet  Google Scholar 

  27. I. J. Schoenberg, Cardinal Spline Interpolation (SIAM, New York, 1973).

    Book  MATH  Google Scholar 

  28. I. J. Schoenberg and G. Szegö, “An Extremum Problem for Polynomials”, Compositio Mathematica 14, 260–268 (1960).

    MathSciNet  MATH  Google Scholar 

  29. A. V. Skorokhod, Random Processes with Independent Increments (Kluwer, Dordrecht, 1991).

    Book  MATH  Google Scholar 

  30. G. Szegö, Orthogonal Polynomials (AMS, Providence, R.I., 1939).

    Google Scholar 

  31. A. F. Timan, Theory of Approximation of Functions of a Real Variable (Pergamon Press, New York, 1963).

    MATH  Google Scholar 

  32. E. L. Wachspress, “Extended Application of Alternating Direction Implicit Iteration Model Problem Theory”, J. SIAM 11, 994–1016 (1963).

    MathSciNet  Google Scholar 

  33. A. M. Yaglom, An Introduction to the Theory of Stationary Random Functions (Prentice-Hall, Englewood Cliffs, N.J., 1962).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Levit.

About this article

Cite this article

Levit, B. Some new perspectives in best approximation and interpolation of random data. Math. Meth. Stat. 22, 165–192 (2013). https://doi.org/10.3103/S1066530713030010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530713030010

Keywords

2000 Mathematics Subject Classification

Navigation