Skip to main content
Log in

Upper functions for positive random functionals. I. General setting and Gaussian random functions

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

In this paper we are interested in finding upper functions for a collection of real-valued random variables {Ψ(χ θ ), θ ∈ Θ}. Here {χ θ , θ ∈ Θ} is a family of continuous random mappings, Ψ is a given sub-additive positive functional and Θ is a totally bounded subset of a metric space. We seek a nonrandom function U: Θ → ℝ+ such that sup θ∈Θ{Ψ(χ θ ) − U(θ)}+ is “small” with prescribed probability. We apply the results obtained in the general setting to the variety of problems related to Gaussian random functions and empirical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Alexander, “Probability inequalities for empirical processes and a law of the iterated logarithm”, Ann. Probab. 12, 1041–1067 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Barron, L. Birgé, and P. Massart, “Risk Bounds for Model Selection via Penalization”, Probab. Theory Rel. Fields 113, 301–413 (1999).

    Article  MATH  Google Scholar 

  3. S. G. Bobkov, “Upper Functions and Oscillating Gaussian Processes”, J. Soviet Math. 43(6), 2745–2751 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  4. O. Bousquet, “A Bennett Concentration Inequality and Its Application to Suprema of Empirical Processes”, C. R. Math. Acad. Sci. Paris 334, 495–500 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Cavalier and Yu. Golubev, “Risk Hull Method and Regularization by Projections of Ill-Posed Inverse Problems”, Ann. Statist. 34, 1653–1677 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  6. R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certaines espaces homogènes, in Lecture Notes in Math. (Springer, Berlin, 1971), Vol. 242.

    Google Scholar 

  7. D. E. Edmunds and H. Triebel, Function Spaces, Entropy Numbers and Differential Operators (Cambridge Univ. Press, Cambridge, 1996).

    Book  Google Scholar 

  8. S. A. Egishyants and E. I. Ostrovskii, “Local and Global Upper Functions for Random Fields”, Theory Probab. Appl. 41(4), 657–665 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  9. G. B. Folland, Real Analysis. Modern Techniques and Their Applications, 2nd ed. (Wiley, New York, 1999).

    MATH  Google Scholar 

  10. E. Giné and V. Koltchinskii, “Concentration Inequalities and Asymptotic Results for Ratio Type Empirical Processes”, Ann. Probab. 34, 1143–1216 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Giné and A. Guillou, “Rate of Strong Uniform Consistency for Multivatiate Kernel Density Estimaton”, Ann. Inst. H. Poincaré, Probab. Statist. 38, 907–921 (2002).

    Article  MATH  Google Scholar 

  12. E. Giné and J. Zinn, “Some Limit Theorems for Empirical Processes”, Ann. Probab. 12, 928–989 (1984).

    Article  Google Scholar 

  13. A. Goldenshluger and O. Lepski, “Universal Pointwise Selection Rule inMultivariate Function Estimation”, Bernoulli 14, 1150–1190 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Goldenshluger and O. Lepski, “Structural Adaptation via L p-Norm Oracle Inequalities”, Probab. Theory and Rel. Fields 143, 41–71 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Goldenshluger and O. Lepski, “Uniform Bounds for Norms of Sums of Independent Random Functions”, Ann. Probab. 39(6), 2318–2384 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. Golubev and V. Spokoiny, “Exponential Bounds for Minimum Contrast Estimators”, Electron. J. Statist. 3, 712–746 (2009).

    Article  MathSciNet  Google Scholar 

  17. N. Kalinauskaĭte, “Upper and Lower Functions for Sums of Independent Random Variables with Limiting Stable Distribution”, Litovsk.Mat. Sb. 6, 249–256 (1966).

    MathSciNet  MATH  Google Scholar 

  18. N. Kluchnikoff, On Adaptive Estimation of Anysotropic Functions, Ph.D. Thesis (Aix-Marseille 1, 2005).

    Google Scholar 

  19. O. V. Lepski, “Asymptotically Minimax Adaptive Estimation. I. Upper Bounds. Optimally Adaptive Estimates”, Theory Probab. Appl. 36, 682–697 (1991).

    Article  Google Scholar 

  20. O. V. Lepski and V.G. Spokoiny, “Optimal Pointwise Adaptive Methods in Nonparametric Estimation”, Ann. Statist. 25, 2512–2546 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  21. M. A. Lifshits, Gaussian Random Functions (Kluwer, Dordrecht, 1995).

    Book  Google Scholar 

  22. P. Massart, “About the Constants in Talagrand’s Concentration Inequalities for Empirical Processes”, Ann. Probab. 28, 863–884 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Qualls and H. Watanabe, “Asymptotic Properties of Gaussian Processes”, Ann. Math. Statist. 43, 580–596 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. N. Shirayev, E. Valkeila, and L. Vostrikova, “On Lower and Upper Functions for Square Integrable Martingales”, Proc. Steklov Inst.Math. 2(237), 281–292 (2002).

    Google Scholar 

  25. V. Spokoiny, “Adaptive Hypothesis Testing Using Wavelets”, Ann. Statist. 24, 2477–2498 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  26. C. J. Stone, “Additive Regression and Other Nonparametric Models”, Ann. Statist. 13(2), 689–705 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Talagrand, “Sharper Bounds for Gaussian and Empirical Processes”, Ann. Probab. 22, 28–76 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Talagrand, The Generic Chaining (Springer, New York, 2005).

    MATH  Google Scholar 

  29. A. B. Tsybakov, “Pointwise and Sup-Norm Sharp Adaptive Estimation of Functions on the Sobolev Classes”, Ann. Statist. 26, 2420–2469 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  30. S. van de Geer, Applications of Empirical Process Theory (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  31. A. W. van der Vaart and J. A. Wellner, Weak Convergence and Empirical Processes (Springer, New York, 1996).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Lepski.

About this article

Cite this article

Lepski, O. Upper functions for positive random functionals. I. General setting and Gaussian random functions. Math. Meth. Stat. 22, 1–27 (2013). https://doi.org/10.3103/S1066530713010018

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530713010018

Keywords

2000 Mathematics Subject Classification

Navigation