Skip to main content
Log in

On asymptotic properties of the plug-in cepstrum estimator for Gaussian time series

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

The paper considers probabilistic properties of the plug-in estimator of the cepstrum (Fourier transform of the logarithm of the spectral density) for stationary Gaussian time series. In the asymptotics of increasing observation time under some regularity condition we construct asymptotic expansions for the high-order central mixed moments of the log-periodogram and of the cepstrumestimator. These asymptotic expansions can be useful in signal processing for construction and performance analysis of statistical inference based on the plug-in estimator of the cepstrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Alexandre and P. Lockwood, “Root Cepstral Analysis: A Unified View. Application to Speech Processing in Car Noise Environments”, Speech Communication 12(3), 277–288 (1993).

    Article  Google Scholar 

  2. S. Amari and H. Nagaoka, Methods of Information Geometry (Oxford University Press, 2000).

  3. T.W. Anderson, The Statistical Analysis of Time Series (Wiley, New York, 1994).

    Book  MATH  Google Scholar 

  4. J. Arteche and J. Orbe, “Bootstrap-Based Bandwidth Choice for Log-Periodogram Regression”, J. Time Series Analysis 6, 591–617 (2009).

    Article  MathSciNet  Google Scholar 

  5. H. Bateman, Higher Transcendental Functions (Krieger, New York, 1981), Vol. 1.

    Google Scholar 

  6. P. Bloomfield, “An Exponential Model for the Spectrum of a Scalar Time Series”, Biometrika 60, 217–226 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Brillinger, Time Series. Data Analysis and Theory (Holt, Rinehart and Winston, New York, 1975).

    MATH  Google Scholar 

  8. R. Butler, “Shear Wave Properties of Marine Sediments Derived from Cepstral Analysis of Background Noise”, Geophysical Research Letters 15(8), 836–839 (1988).

    Article  Google Scholar 

  9. D. G. Childers, D. P. Skinner, and R. C. Kemerait, “The Cepstrum: A Guide to Processing”, IEEE Proc. 65(10), 1428–1443 (1977).

    Article  Google Scholar 

  10. F. R. Gantmacher, Matrix Theory (Chelsea Publishing, New York, 1960).

    Google Scholar 

  11. Yu. S. Kharin, “Optimality and Robustness in Statistical Forecasting”, International Encyclopedia of Statistical Science 15, 1034–1037 (2011).

    Google Scholar 

  12. Yu. S. Kharin and V. A. Voloshko, Robust Estimation of AR Coefficients under Simultaneously Influencing Outliers and Missing Values”, J. Statist. Plann. Inference 141(9), 3276–3288 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  13. D. J. Lee, T. F. Krile, and S. Mitra, “Power Cepstrum and Spectrum Techniques Applied to Image Registration”, Appl. Optics 27(6), 1099–1106 (1988).

    Article  Google Scholar 

  14. D. J. Lee, S. Mitra, and T. F. Krile, “Analysis of Sequential Complex Images, Using Feature Extraction and Two-Dimensional Cepstrum Techniques”, J. Opt. Soc. Amer. A 6(6), 863–870 (1989).

    Article  Google Scholar 

  15. N. Merhav, “On the Asymptotic Statistical Behavior of Empirical Cepstral Coefficients”, IEEE Trans. on Signal Processing 41(5), 1990–1993 (1993).

    Article  MATH  Google Scholar 

  16. A.M. Noll, “Cepstrum Pitch Determination”, J. Amer. Statist. Assoc. 41(2), 293–309 (1967).

    MathSciNet  Google Scholar 

  17. A. V. Oppenheim and R.W. Shafer, Discrete-Time Signal Processing (Englewood Cliffs, NJ: Prentice Hall, 1989).

    MATH  Google Scholar 

  18. V. A. Reisen, E. Moulines, P. Soulier, and G. C. Franco, “On the Properties of the Periodogramof a Stationary Long-Memory Process over Different Epochs with Applications”, J. Time Series Analysis 1, 20–36 (2010).

    Article  MathSciNet  Google Scholar 

  19. V. Scheidemann, Introduction to Complex Analysis in Several Variables (Birkhauser, Basel-Boston-Berlin, 2005).

    MATH  Google Scholar 

  20. A. N. Shiryaev, Probability (Springer, Berlin, 1994).

    Google Scholar 

  21. P. W. Smith and N. Nandhakumar, “An Improved Power Cepstrum Based Stereo Correspondence Method for Textured Scenes”, IEEE Trans. on Patt. Anal. and Machine Intell. 18(3), 338–348 (1996).

    Article  Google Scholar 

  22. V. A. Voloshko and Yu. S. Kharin, “Statistical Forecasting Based on Bloomfield Exponential Model”, in Proc. 9th International Conference on Computer Data Analysis and Modeling (CDAM), Ed. by S. Aivazian, P. Filzmoser, Yu. Kharin (BSU, Minsk, 2010), Vol. 1, pp. 268–271.

    Google Scholar 

  23. F. S. Wei and M. Li, “Cepstrum Analysis of Seismic Source Characteristics”, Acta Seismologica Sinica 16(1), 50–58 (2003).

    Article  MathSciNet  Google Scholar 

  24. Y. Yeshurun and E. L. Schwartz, “Cepstral Filtering on a Column Image Architecture: A Fast Algorithm for Binocular Stereo Algorithm”, IEEE Trans. on Patt. Anal. and Machine Intell. 11(7), 759–767 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Kharin.

About this article

Cite this article

Kharin, Y.S., Voloshko, V.A. On asymptotic properties of the plug-in cepstrum estimator for Gaussian time series. Math. Meth. Stat. 21, 43–60 (2012). https://doi.org/10.3103/S1066530712010036

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530712010036

Keywords

2000 Mathematics Subject Classification

Navigation