Skip to main content
Log in

Minimax revisited. II

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

The global lower bound for the minimax risk proposed in Part I [12] is applied to the pointwise estimation of functions in the white Gaussian noise, under the squared losses. Some general ellipsoidal and cuboidal functional classes are discussed, including classes of entire functions of exponential type, Paley-Wiener classes of analytic functions, Sobolev classes and their modifications. Based on the proposed risk bounds, a numerical comparison of the minimax risks and the linear minimax risks is made. A nonasymptotic comparison of different types of functional classes is facilitated by their respective embeddings provided the classes are properly calibrated. This discussion demonstrates that the commonly perceived notion of a close connection between the smoothness of an unknown function and the accuracy of estimation can be misleading in a nonasymptotic setting. In particular, the notion of optimal rates of convergence, which has dominated nonparametric statistics for the last three decades, may no longer be productive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Donoho, “One-Sided Inference about Functionals of a Density”, Ann. Statist. 16, 1390–1420 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  2. D. L. Donoho, R. C. Liu, and B. MacGibbon, “Minimax Risk over Hyperrectangles, and Implications”, Ann. Statist. 18, 1416–1437 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  3. D. L. Donoho, “Statistical Estimation and Optimal Recovery”, Ann. Statist. 22, 238–270 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  4. Y. Golubev and B. Levit, “Asymptotically Efficient Estimation for Analytic Distributions”, Math. Methods Statist. 5, 357–368 (1996).

    MATH  MathSciNet  Google Scholar 

  5. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th ed. (Academic Press, New York, 1994).

    MATH  Google Scholar 

  6. I. A. Ibragimov and R. Z. Khasminski, “An Estimate of the Density of a Distribution”, in Studies in Mathematical Statistics, IV, Zap. Nauchn. Sem. LOMI, Leningrad 98, 61–85 (1980).

    MATH  Google Scholar 

  7. I. A. Ibragimov and R. Z. Khasminski, Statistical Estimation: Asymptotic Theory (Springer, New York, 1981).

    MATH  Google Scholar 

  8. I. A. Ibragimov and R. Z. Khasminski, “An Estimate of the Density of a Distribution Belonging to a Class of Entire Functions”, Theor. Probab. Appl. 27, 514–524 (1982).

    Article  MATH  Google Scholar 

  9. I. A. Ibragimov and R. Z. Khasminski, “On Nonparametric Estimation of the Value of a Linear Functional in Gaussian White Noise”, Theor. Probab. Appl. 29, 18–32 (1984).

    Article  Google Scholar 

  10. I. M. Johnstone, “On Minimax Estimation of a Sparse Normal Mean Vector”, Ann. Statist. 22, 271–289 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  11. I. M. Johnstone, “Minimax Bayes, AsymptoticMinimax and SparseWavelet Priors”, in Statistical Decision Theory and Related Topics, V, ed. by S. S. Gupta and J. O. Berger (Springer, New York, 1994), pp. 303–326.

    Google Scholar 

  12. B. Levit, “Minimax revisited. I”, Math. Methods Statist. 19(3), 283–297 (2010).

    Article  Google Scholar 

  13. R. C. Paley and N. Wiener, Fourier Transforms in the Complex Domain (AMS Colloquium Publications, Providence, RI, 1934), Vol. 19.

    MATH  Google Scholar 

  14. M. S. Pinsker, “Optimal Filtration of Square-Integrable Signals in Gaussian Noise”, Problems Inform. Transmission 16, 52–68 (1980).

    MathSciNet  Google Scholar 

  15. A. B. Tsybakov, “Pointwise and Sup-Norm Sharp Adaptive Estimation of Functions on the Sobolev Classes”, Ann. Statist. 26, 2420–2469 (1998).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Levit.

About this article

Cite this article

Levit, B. Minimax revisited. II. Math. Meth. Stat. 19, 299–326 (2010). https://doi.org/10.3103/S1066530710040010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530710040010

Keywords

2000 Mathematics Subject Classification

Navigation